Given line l and point A not on l, copy $\angle CBA$ to A to construct a line parallel to l. We may do this using Proposition I-23 of Euclid:

They are parallel then by Proposition I-27. Suppose t is another line through A not equaling n:

Then the interior angles between \overline{AB} and t (that is, on the same side of t as l) cannot equal those between \overline{AB} and n; since each pair of interior angles (the two between \overline{AB} and t and the two between \overline{AB} and n) must add to 180°, one of the angles between \overline{AB} and t must be smaller than the corresponding angle between \overline{AB} and n, the interior angles between \overline{AB} and t and between \overline{AB} and l add to less than 180°, and so Euclid's 5th Postulate implies that t and l must intersect.
As in the statement of the problem, suppose \(\angle CBA + \angle BAD < 180^\circ \). Copy \(\angle CBA \) to \(A \) to get \(\angle EAF \). Then \(\angle EAF + \angle EAB = 180^\circ \) by Proposition I-13 of Euclid. Now \(\angle EAF = \angle CBA \) by construction, so \(\angle BAD < \angle BAE \); thus the lines \(n \) and \(t \) cannot be equal. As in problem 2.1.5, Proposition I-27 of Euclid implies \(n \) is parallel to \(l \), so Playfair implies that \(t \) is not parallel to \(l \); so \(t \) and \(l \) must intersect. We need to show they intersect on the same side of \(m \) as \(D \) and \(C \).

Suppose not—say, \(l \) and \(t \) intersect at a point \(G \) on the other side of \(m \) from \(C \). Then by the Exterior Angle Theorem, \(\angle ABC \) is greater than \(\angle GAB \). As we saw, \(\angle ABC + \angle BAD < 180^\circ \), so \(\angle GAB + \angle BAD < 180^\circ \).

But this contradicts Proposition I-13 along the line \(t \). So they must intersect on the other side, proving Euclid's Fifth Postulate.
2.1.7. Suppose Playfair's True, \(l \) and \(n \) are parallel, and \(m \) is perpendicular to \(l \); let \(A \) be a point of intersection of \(n \) and \(m \). By Euclid's Prop. I-11, we can draw a perpendicular through \(A \) to \(m \); call it \(k \):

Now by Euclid's Prop. I-27, \(k \) and \(n \) are parallel. Then Playfair implies that \(k = n \), so \(n \) is perpendicular to \(m \).

Conversely, suppose that whenever a line is perpendicular to one of two parallel lines, it must be perpendicular to the other. Suppose \(l \) is a line and \(A \) is a point not on \(l \). By Euclid's Prop. I-12, there is a line through \(A \) perpendicular to \(l \); call it \(m \):

Now, by Euclid's Prop. I-11, there is a line through \(A \) perpendicular to \(m \), call it \(k \):

By Prop. I-27, \(k \) and \(l \) are parallel. This proves the existence in Playfair. Now if \(n \) is any other line through \(A \) parallel to \(l \), by our hypothesis \(n \) must
be perpendicular to m. So n and k both pass through A and are perpendicular to m, hence they are equal. This proves uniqueness in Playfair.

Remark: Here's a "proof" that if n and k pass through a point A on line m and are perpendicular to m, they are equal; take one ray from each line:

Since n and k are both perpendicular to m, the angles are both right angles, so by Prop. 1-14 of Euclid, the rays form a line.

Euclid's Second Postulate should then say that, given a ray, it can be extended uniquely to a line.

[This is a shortcoming in Euclid—compare to Hilbert's Axiom I-2 on p. 445.]
2.2.7. Suppose a triangle has two angles congruent:

\[\angle ABC = \angle ACB. \]

So \(\triangle ABC \) is congruent to \(\triangle ACB \) — that is, congruent in a way that interchanges \(B \) and \(C \).

Well,

by hypothesis \(\angle ABC = \angle ACB \), and
\(\angle ACB = \angle ABC \) (see labelling);
also side \(BC \) equals side \(CB \) evidently. So
by ASA, the two triangles are congruent; hence side \(AB \) is congruent to side \(AC \), proving that \(\triangle ABC \) is isosceles.