Math 241, Midterm 2

Name______________________________

Signature__________________________

Circle your section:

BD1 8-8:50 a.m., 147 Altgeld, Dan Lior
BD2 9-9:50 a.m., 347 Altgeld, Dan Lior
BD3 10-10:50 a.m., 443 Altgeld, Daniel Morton
BD4 10-10:50 a.m., 140 Henry, Christopher Lee
BD5 12-12:50 p.m., 143 Henry, Dimitris Koukoulopoulos
BD6 3-3:50 p.m., 154 Henry, Dimitris Koukoulopoulos

Show all work. Justify your answers.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total Score</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1. (12 points) Give an equation for the tangent plane to the surface \(x^2 + 2y^2 + z^2 = 4 \) at the point \((1,1,1)\). Show your work.

Let \(g(x, y, z) = x^2 + 2y^2 + z^2 - 4 \).

Then \(\nabla g(1,1,1) = \langle 2x, 4y, 2z \rangle \).

\(\nabla g(1,1,1) = \langle 2, 4, 2 \rangle \) is normal vector.

This gives equation
\[
\langle x-1, y-1, z-1 \rangle \cdot \langle 2, 4, 2 \rangle = 0 \quad \text{or}
\]
\[
2(x-1) + 4(y-1) + 2(z-1) = 0
\]

Problem 2. (8 points) Suppose \(h(x, y) \) is a function for which
\[
h(1,2) = 4 \quad \text{and} \quad \nabla h(1,2) = \langle 3, 5 \rangle.
\]

Use linear approximation to estimate \(h(1.1, 1.9) \). Show your work.

\[
h(1.1, 1.9) \approx h(1,2) + \nabla h(1,2) \cdot \langle -0.1, -0.1 \rangle
\]

\[
4 + 3 \cdot (-0.1) = 4 + 0.3 - 0.5 = 3.8
\]
Problem 3. (10 + 4 points) Let

\[f(x, y) = x^2 - \frac{1}{3}y^3 - x^2y + y. \]

(with domain the entire plane).

(1) Find the critical points of \(f(x, y) \). Show your work.

\[\nabla f = \left< 2x - 2xy, -y^2 - x^2 + 1 \right> \]

\[\nabla f = 0 \implies 2x = 2xy \quad \text{and} \quad x^2 + y^2 = 1 \]

Cases

\[
\begin{align*}
 x & = 0 & \quad \text{or} & & y & = \frac{1}{2} \\
 0^2 + y^2 & = 1 & & \quad \text{so} & & y & = \pm 1 \\
\end{align*}
\]

\[\boxed{(0, 1) \quad \text{and} \quad (0, -1)} \]

(2) Compute the Hessian \(H(f)(3, 0) \) of \(f \) at the point (3, 0). Show your work.

\[H(f) = \begin{pmatrix}
 \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\
 \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2}
\end{pmatrix} = \begin{pmatrix}
 2 - 2y & -2x \\
 -2x & -2y
\end{pmatrix} \]

\[H(f)(3, 0) = \begin{pmatrix}
 2 & -6 \\
 -6 & 0
\end{pmatrix} \]

Problem 4. (10 points) Let \(f(x, y, z) = x^3yz + 3x(z^2 - 1) + 4z \). Find the unit direction \(u \) for which \(D_u f(1, 0, 0) \) is the largest. Show your work.

\[\nabla f = \left< 3x^2yz + 3x(z^2 - 1), x^3z, x^3y + 3x(2z) + 4 \right> \]

\[\nabla f(1, 0, 0) = \left< -3, 0, 4 \right> \]

\[||\nabla f(1, 0, 0)|| = \sqrt{(-3)^2 + 4^2} = \sqrt{25} = 5. \]

So, \[\hat{u} = \frac{\nabla f(1, 0, 0)}{||\nabla f(1, 0, 0)||} = \frac{\left< -3, 0, 4 \right>}{5} = \left< \frac{-3}{5}, 0, \frac{4}{5} \right> \]
Problem 5. (12 points) Suppose \(g(x, y) \) is some function with continuous second partial derivatives (you are not given a formula for \(g \)). Suppose that \(g \) has critical points at \((0, 0), (1, 0)\) and \((0, 3)\). Suppose that the Hessian of \(g \) at the three critical points is:

\[
H(g)(0, 0) = \begin{pmatrix} 0 & 3 \\ 3 & 1 \end{pmatrix}, \quad H(g)(1, 0) = \begin{pmatrix} -2 & 1 \\ 1 & 2 \end{pmatrix}, \quad H(g)(0, 3) = \begin{pmatrix} 5 & 1 \\ 1 & 1 \end{pmatrix}.
\]

Classify each of the critical points \((0, 0), (1, 0)\), and \((0, 3)\) of \(g \) as local max, local min, saddle point, or "not enough information," and show your work/justify your answers very briefly.

\[
\begin{array}{ccc}
(0, 0) & (1, 0) & (0, 3) \\
D = 0 & D = (-2) \cdot (2) - 1 \cdot 1 & D = 5 \cdot 1 - 1 \cdot 1 \\
& = -9 < 0 & = 4 > 0 \\
& \text{saddle point} & \frac{\partial^2 g}{\partial x^2} = 5 > 0 \\
& & \text{local min.}
\end{array}
\]

Problem 6. (12 points) Let

\[
x(u, v) = 2u^2, \quad y(u, v) = 3v - 2u
\]

be functions of the variables \(u \) and \(v \). Suppose \(f(x, y) \) is a function of the variables \(x \) and \(y \) and let

\[
F(u, v) = f(x(u, v), y(u, v))
\]

(the composite function). Suppose also that we have the following tables of values:

<table>
<thead>
<tr>
<th>((x, y))</th>
<th>(\frac{\partial f}{\partial x}(x, y))</th>
<th>((x, y))</th>
<th>(\frac{\partial f}{\partial y}(x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1, 0))</td>
<td>-3</td>
<td>((1, 0))</td>
<td>-2</td>
</tr>
<tr>
<td>((2, 1))</td>
<td>4</td>
<td>((2, 1))</td>
<td>-1</td>
</tr>
<tr>
<td>((2, 3))</td>
<td>1</td>
<td>((2, 3))</td>
<td>2</td>
</tr>
<tr>
<td>((3, 1))</td>
<td>2</td>
<td>((3, 1))</td>
<td>7</td>
</tr>
<tr>
<td>((3, 2))</td>
<td>-7</td>
<td>((3, 2))</td>
<td>3</td>
</tr>
</tbody>
</table>

Compute \(\frac{\partial F}{\partial u}(1, 1) \).

Justify your answer.

\[
x(1, 1) = 2(1)^2 = 2, \quad y(1, 1) = 3 \cdot 1 - 2 \cdot 1 = 1.
\]

\[
\left\langle \frac{\partial x}{\partial u}, \frac{\partial y}{\partial u} \right\rangle = \left\langle 4u, -2 \right\rangle, \quad \text{so}
\]

\[
\left\langle \frac{\partial x}{\partial u}(1, 1), \frac{\partial y}{\partial u}(1, 1) \right\rangle = \left\langle 4, -2 \right\rangle.
\]

\[
\nabla f(x(1, 1), y(1, 1)) = \nabla f(2, 1) = \langle 4, -1 \rangle.
\]

\[
\nabla f(2, 1) \cdot \left(\frac{\partial x}{\partial u}(1, 1), \frac{\partial y}{\partial u}(1, 1) \right) = \langle 4, -2 \rangle \cdot \langle 4, -1 \rangle = 18.
\]
Problem 7. (14 + 3 + 3 points) Let
\[f(x, y) = \frac{y}{2} - x^2. \]

(1) Use the method of Lagrange multipliers to find the maximum and minimum of \(f(x, y) \) subject to the constraint \(16x^2 + y^2 = 64 \). Show your work.

(2) Graph the parabola \(f(x, y) = 0 \) and the ellipse \(16x^2 + y^2 = 64 \) on the same graph.

(3) Suppose \(f \) has a maximum at the point \((a, b)\), and let \(f(a, b) = M \) be the maximum value. How are the graphs of the ellipse and the level set \(f(x, y) = M \) related at \((a, b)\)?

Let \(g(x, y) = 16x^2 + y^2 - 64 \). Then

\[\nabla f = \langle -2x, \frac{1}{2} \rangle, \quad \nabla g = \langle 32x, 2y \rangle. \]

Set \(\nabla f = \lambda \nabla g \), get

\[
\begin{align*}
-2x &= 32x \lambda \\
\frac{1}{2} &= 2y \lambda \\
16x^2 + y^2 &= 64
\end{align*}
\]

To solve \(-2x = 32x \lambda\):

Cases

\(x = 0 \)

\[16 \cdot 0^2 + y^2 = 64 \]

So \(y = \pm 8 \)

Points \((0, 8)\), \((0, -8)\)

\[
\begin{align*}
f(0, 8) &= 4, \\
f(0, -8) &= -4,
\end{align*}
\]

Maximum

\[
\begin{align*}
f(\sqrt{3}, -4) &= -5, \\
f(-\sqrt{3}, -4) &= -5
\end{align*}
\]

Minimum

13) They are tangential at \((a, b)\) — alternatively, they are level sets of functions \(f, g \) whose gradients \(\nabla f(a, b) \) and \(\nabla g(a, b) \) are parallel.
Problem 8. (4 + 4 + 4 points) Let \(g(x, y) = (y - x^2)(y - 2x^2) \).

(1) Let \(r(t) = (at, bt) \) be a parametrized line through the origin (where \(a, b \) are some constants, not both zero). Show that \(g(r(t)) \) has a local minimum at \(t = 0 \) for every choice of \(a \) and \(b \).

\[
G(t) = g(r(t)) = (bt - a^2t^2)(bt - 2a^2t^2) \\
= b^2t^2 - a^2bt^3 - 2a^2bt^3 + 2a^4t^4.
\]

\[
G'(t) = 2b^2t - 2a^2bt^2 + 8a^4t^3 \\
G''(t) = 2b^2 - 18a^2bt + 24a^4t^2.
\]

\begin{align*}
\text{Cases} & \quad \text{If } b \neq 0 \quad \begin{cases}
G'(0) = 0, \\
G''(0) > 0,
\end{cases} \\
& \quad \text{so, local min at } t = 0.
\end{align*}

\begin{align*}
\text{If } b = 0 & \quad G'(t) = 2a^4t^4, \\
& \quad \text{if } 2a^4 > 0, \\
& \quad \text{then } G'(t) \text{ has a local minimum at } t = 0.
\end{align*}

(2) Graph the level set \(g(x, y) = 0 \) in the plane. On the same graph, label the regions where \(g(x, y) \) is positive (with a +) and where \(g(x, y) \) is negative (with a −).

(3) Is \((0, 0)\) a local maximum, local minimum, or neither for \(g(x, y) \)? Justify your answer. ["Not enough information" will be worth zero points.] \textbf{Hint: look at your picture from part (2).}

The regions labelled "+" and "−" both have \((0, 0)\) on their boundaries, so \(g(x, y) \) has neither a local max nor a local min at \((0, 0)\).