Conservative vector fields

\[\mathbb{E} \quad \vec{F}(x, y) = \langle 2x, 3y^2 \rangle. \]

\[C_1 : \quad \vec{r}(t) = t \langle 1, 2 \rangle, \quad 0 \leq t \leq 1. \]

\[\vec{r}'(t) = \langle 1, 2 \rangle. \]

\[\vec{F}(\vec{r}(t)) = \langle 2t, 3(2t)^2 \rangle. \]

\[\vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) = \langle 2t, 12t^2 \rangle \cdot \langle 1, 2 \rangle \]

\[= 2t + 24t^2. \]

\[\int_{C_1} \vec{F} \cdot d\vec{r} = \int_0^1 \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) \, dt \]

\[= \left. \int_0^1 (2t + 24t^2) \, dt = \frac{t^2}{2} + 8t^3 \right|_0^1 = 9. \]
\(C_2 : \overrightarrow{F}(t) = \langle t, 2t^2 \rangle, \ 0 \leq t \leq 1. \)
\(\overrightarrow{F}'(t) = \langle 1, 4t \rangle. \)
\(\overrightarrow{F}(t) \cdot \overrightarrow{F}'(t) = \langle 2t, 3(2t^3) \rangle \cdot \langle 1, 4t \rangle \)
\[= 2t + 24t^4. \]
\[\int_{C_2} \overrightarrow{F} \cdot d\vec{r} = \int_0^1 (2t + 24t^4) \, dt \]
\[= \left[t^2 + 8t^5 \right]_0^1 = 9. \]

This is because \(\overrightarrow{F} \) is a
radient — integrating
\[\int_C \vec{F} \cdot d\vec{r} \] measures how much energy the field \(\vec{F} \) puts into a particle moving along path \(C \). But if \(\vec{F} = \nabla f \) is a potential function, that "energy put in" is change in potential energy. So, if the change in potential energy is

\[f(x_2, y_2) - f(x_1, y_1) \]
Conclusion. The integral \(\int_{C} \vec{F} \cdot d\vec{r} \) only depends on the endpoints of \(C \) provided \(\vec{F} = \nabla \phi \) is a conservative vector field.
Def: A region $D \subseteq \mathbb{R}^2$ is path-connected if every pair of points in D can be connected by a piecewise smooth curve.
Then \(\mathbf{F}(x, y) = \langle F_1, F_2 \rangle \)
be a vector field that is continuous on a path-connected region \(D \subset \mathbb{R}^2 \). Then the line integral \(\int_C \mathbf{F} \cdot d\mathbf{r} \) is independent of path, i.e., is completely determined by the beginning and ending points of the path, if and only if the vector field is conservative on \(D \).
 FTC in one variable

\[\int_{a}^{b} f'(x) \, dx = f(b) - f(a). \]

Fundamental Theorem of Calculus for Line Integrals

Suppose \(\overrightarrow{F}(x,y) = \nabla f(x,y) \).

Suppose \(\overrightarrow{F} \) is continuous on the open path-connected region \(D \subset \mathbb{R}^2 \) and \(C \) is a piecewise \(C^1 \) curve in \(D \) connecting \((x_1, y_1)\) to \((x_2, y_2)\).
\[\int_{C} \mathbf{F} \cdot d\mathbf{r} = f(x, y, z) - F(x, y, z) \]

\[= \int_{C} \mathbf{F} \cdot d\mathbf{r} \]

Diagram: A closed path with points labeled (x1, y1, z1) and (x2, y2, z2) connected by a smooth curve.
Suppose I take
\[F(x, y) = \nabla A(x, y), \] where
\[A(x, y) = xy. \] So \[F(x, y) = \langle y, x \rangle. \]

Integrate around circle:

\[\vec{r}(t) = \langle \cos t, \sin t \rangle, \quad 0 \leq t \leq 2\pi. \]
\[\vec{r}'(t) = \langle -\sin t, \cos t \rangle. \]
\[F(\vec{r}(t)) = \langle \sin t, \cos t \rangle. \]
\[F(\vec{r}(t)) \cdot \vec{r}'(t) = \cos^2 t - \sin^2 t. \]
\[= \cos 2t. \]
Could you have predicted? Yes.

Could have calculated integral with \(F(t) = \langle 1, 0 \rangle \) instead, yet same answer because \(F \) is conservative.

If \(F \) is conservative,
\[\int_{C_2 \cup (-C_1)} \mathbf{F} \cdot d\mathbf{r} = 0. \]

Conversely, if every integral \(\int_C \mathbf{F} \cdot d\mathbf{r} \) around a closed curve is 0, \(\mathbf{F} \) is conservative.

Summary

Then suppose \(\mathbf{F} \) is continuous on open, path-connected region \(D \subseteq \mathbb{R}^2 \).

Then \(\mathbf{F} \) is conservative if
\[\int_C \mathbf{F} \cdot d\mathbf{r} = 0 \]
for any piecewise \(C^1 \) closed curve \(C \) in \(D \).
closed curve: same beginning & ending points, it's a loop.

\[F(x, y) = \langle \frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2} \rangle = \langle F_1, F_2 \rangle \]

Could it be conservative?

Exercise
\[\frac{\partial F_2}{\partial x} = \frac{y^2-x^2}{(x^2+y^2)^2} = \frac{\partial F_1}{\partial y}. \]

So it could be.
Integrate around a loop:
\[\vec{r}(t) = \langle \cos t, \sin t \rangle, \quad 0 \leq t \leq 2\pi \]
\[\vec{r}'(t) = \langle -\sin t, \cos t \rangle. \]
\[\vec{r}(t) \cdot \vec{r}'(t) = \langle -\sin t, \cos t \rangle \cdot \langle -\sin t, \cos t \rangle \]
\[= \sin^2 t + \cos^2 t = 1. \]
\[\int_C \vec{F} \cdot d\vec{r} = 2\pi, \quad \neq 0. \]