Note If G_1, G_2 are groups and $H_1 \leq G_1$, $H_2 \leq G_2$ are subgroups, then $H_1 \times H_2 \leq G_1 \times G_2$ is a subgroup.

Next, we want to note that if one knows the kernel of a homomorphism, one essentially also knows its image.

Prop Suppose $\overline{\phi} : G \longrightarrow H$ is a homomorphism. Then there is an "induced" isomorphism

$$G/\ker(\overline{\phi}) \longrightarrow \text{Im}(\overline{\phi})$$

making

$$\begin{array}{ccc}
G & \xrightarrow{\overline{\phi}} & H \\
\pi \downarrow & & \downarrow \overline{\phi} \\
G/\ker(\overline{\phi}) & \cong & \text{Im}(\overline{\phi})
\end{array}$$

commute, i.e., $\overline{\phi} = \overline{\phi} \circ \pi$.

Proof. Let $K = \ker(\overline{\phi})$; this is a normal
Proof. Let $K = \ker(\phi)$; this is a normal subgroup of G. Define a function

$$\overline{\phi} = G/K \to \text{Im}(\phi)$$

by

$$\overline{\phi}(gK) = \overline{\phi}(g).$$

This is well-defined: if $g_1K = g_2K$, say $g_1g_1^{-1}e = g_2K$ for $K \in K$, then

$$\overline{\phi}(g_1) = \overline{\phi}(g_2K) = \overline{\phi}(g_2) \overline{\phi}(K) = \overline{\phi}(g_2).e = \overline{\phi}(g_2).$$
* $\bar{\pi}$ is a homomorphism:

$$\bar{\pi} (g_1, g_2, K) = \bar{\pi} (g_1 g_2 K) = \bar{\pi} (g_1 g_2)$$
$$= \bar{\pi} (g_1) \bar{\pi} (g_2) = \bar{\pi} (g_1 K) \bar{\pi} (g_2 K).$$

* $\text{Im}(\bar{\pi}) = \text{Im}(\bar{\pi}):$ this at least is clear.

* $\bar{\pi}$ is injective: we prove

Lemma. If $M \xrightarrow{\bar{\pi}} L$ is a homomorphism of groups and $\ker(\bar{\pi}) = \{e\}$ then $\bar{\pi}$ is injective.

Proof. Suppose $\bar{\pi}(g_1) = \bar{\pi}(g_2)$. Then

$$\bar{\pi}(g_1) \bar{\pi}(g_2)^{-1} = e,$$

so $\bar{\pi}(g_1 g_2^{-1}) = e$,

so $g_1 g_2^{-1} \in \ker(\bar{\pi}) = \{e\}$, so $g_1 = g_2$. ∎

* $\bar{\pi} \circ \pi = \bar{\pi}:$ \hspace{1cm} $\bar{\pi}(\pi(g)) = \bar{\pi}(g K) = \bar{\pi}(g),$

This proves the proposition. ∎
Corollary Suppose G and H are finite groups and that $|G|$ and $|H|$ have no common factor (i.e., $\gcd = 1$). Then there is no nontrivial homomorphism from G to H.

Proof. Suppose $\varphi: G \to H$ is a homomorphism. Then $|G| = |G/\ker(\varphi)| \cdot |\ker(\varphi)|$ by Lagrange; but also $|G/\ker(\varphi)| = |\text{Im}(\varphi)|$, which divides $|H|$ by Lagrange. So $\gcd(|G|, |H|) \geq |\text{Im}(\varphi)|$.

If $\gcd = 1$, then $\text{Im}(\varphi) = \{e\}$. □

So when is there a nontrivial homomorphism $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$?

Suppose k divides both n and m.
Write \(n = ka \) and \(m = kb \).

Then

(i) The image of \(bZ \) in \(Z/mZ \) is isomorphic to \(Z/kZ \).

Proof. We have a homomorphism

\[
bZ \to Z/mZ
\]

with kernel \(mZ \), so its image is isomorphic to \(bZ/mZ \). There is also a homomorphism

\[
Z \to bZ/mZ
\]

given by \(\lambda(b) = cb + mZ \).

Its kernel is

\[
\{ b \in Z \mid b \in mZ \} = kZ,
\]

so \(\text{im}(\lambda) \cong Z/kZ \).
(ii) There is a surjective homomorphism

\[\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/k\mathbb{Z}. \]

We may define it by taking \(\alpha(l + n\mathbb{Z}) = l + k\mathbb{Z} \).

[Why is it well-defined? We use that \(n = km \).]

Combining (i) and (ii), we get a homomorphism

\[\mathbb{Z}/a\mathbb{Z} \to \mathbb{Z}/k\mathbb{Z} \cong \mathbb{Z}/(mn)\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}. \]

The image of the composite is isomorphic to \(\mathbb{Z}/k\mathbb{Z} \).

Cor \(k \mid (n, m) \iff \) there is a homomorphism \(\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \) with image of order \(k \).
We've noticed by now that if \(n = mq \),
then there is a surjective homomorphism
\[
\frac{\mathbb{Z}}{m\mathbb{Z}} \rightarrow \frac{\mathbb{Z}}{n\mathbb{Z}}
\]
with kernel
\[
\ker(\phi) = m\mathbb{Z}/n\mathbb{Z}, \quad \text{i.e.}
\]
\[
\frac{\mathbb{Z}}{m\mathbb{Z}/n\mathbb{Z}} \cong \frac{\mathbb{Z}}{n\mathbb{Z}}.
\]
This looks like a cancellation rule! And so it is.

Theorem Suppose \(N \) and \(K \) are normal subgroups of \(G \) with \(K \leq N \). Then
\[
G/K \cong G/N.
\]

Proof. Note that, since \(K \leq N \), we have
\[
KN = N.
\] So, given a coset \(gK \) in \(G \), we may form the coset
\[gK \times gN \text{ in } G, \text{ and we get} \]
\[g_1g_2K = g_1g_2N = g_1Ng_2N \]
\[= g_1K \times g_2K. \text{ So, the function} \]
\[\overline{\Phi} \colon \frac{G}{K} \rightarrow \frac{G}{N} \]
\[\text{given by } \overline{\Phi}(gK) = gKN = gN \]
\[\text{is a homomorphism. It is certainly surjective. If } gK \in \text{ker}\overline{\Phi}, \text{ i.e.} \]
\[gKN = \overline{\Phi}(gK) = N, \text{ then } g \in N, \]
\[\text{i.e. } gK \in N/K. \text{ Certainly } N/K \subseteq \text{ker}(\overline{\Phi}), \]
\[\text{so we conclude that } N/K = \text{ker}(\overline{\Phi}). \]
\[\text{It now follows from our proposition that} \]
\[G/N = \text{Im}(\overline{\Phi}) \cong (G/K)/\text{ker}(\overline{\Phi}) = (G/K)/(N/K). \]
Example Consider the dihedral group D_4 with elements $1, y, y^2, y^3, x, xy, xy^2, xy^3$ that satisfy $x = x^{-1}$, $xyx^{-1} = y^{-1} = y^3$.

We saw that $K = \langle y^2 \rangle = \{1, y^2\}$ is normal, as is $N = \langle y \rangle$.

Now D_4/K has order $\frac{|D_4|}{|K|} = \frac{8}{2} = 4$.

and its cosets are K, yK, xK, xyK [check!].

N/K consists of cosets K, yK.

$D_4/K \times N/K$ has order 2, and is isomorphic to D_4/N.

Claim $D_4/K \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, and this identifies N/K with $\langle 0, 1 \rangle$.

m427-wk5 Page 9