Sylow Theorems

Let \(G \) be a finite group and \(p \) be a prime number. Write

\[|G| = p^e m \quad \text{where} \quad (p,m)=1. \]

First Sylow Theorem: There is a subgroup of \(G \) of order \(p^e \).

Corollary: If \(p \mid |G| \) then \(G \) has an element of order \(p \).

Proof: Let \(H \leq G \) be a subgroup of order \(p^e \). Choose a non-identity element \(x \in H \), say with \(o(x) = p^k \), \(k > 1 \). Then

\[(x^{p^k})^p = e \quad \text{and} \quad x^{p^{k-1}} \neq e. \]

Def: Let \(G, \ p, \ |G| = p^e m \) be as above.

A subgroup of \(G \) of order \(p^e \) is a Sylow \(p \)-subgroup of \(G \).
Second Sylow Theorem. Let $K \leq G$ be a subgroup whose order is divisible by p, and let H be a Sylow p-subgroup of G. Then for some $x \in G$, $xHx^{-1} \cap K$ is a Sylow p-subgroup of K.

Corollary. Any two Sylow p-subgroups of G are conjugate, i.e., if H, H' are Sylow p-subgroups of G then there exists $x \in G$ such that $xHx^{-1} = H'$.

Third Sylow Theorem. Notation as above.

Then the number of Sylow p-subgroups of G divides n and is congruent to 1 modulo p.
Application. Let G be a group of order 15. Let n_3 be the number of Sylow 3-subgroups of G; then $n_3 \equiv 1 \pmod{3}$, so n_3 is one of $1, 4, 7, 10, ...$. But also n_3 divides 5, so we conclude $n_3 = 1$. Similarly one argues that the number n_5 of Sylow 5-subgroups is 1. Thus, by the Corollary to the 2nd Sylow Theorem, G has normal subgroups H_1, H_2 of orders 3 and 5. Certainly $H_1 \cap H_2 = \{e\}$, and we find, by a homework problem, that the function

$$H_1 \times H_2 \to G$$

$$\phi(h_1, h_2) = h_1 h_2$$

is a group isomorphism. Since $H_1 \cong \mathbb{Z}/3\mathbb{Z}$ and $H_2 \cong \mathbb{Z}/5\mathbb{Z}$, we find $G \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$.
We'll want a couple of preliminaries:

Lemma 1 Let S be a subset of a finite group G. Then the order of $Stab(S) = \{g \in G \mid gS \subseteq S\}$ divides the order of G.

Proof. The stabilizer $Stab(S)$ is a subgroup of G that preserves $S \subseteq G$, hence we get an action of $Stab(S)$ on S. So S is a union of orbits of $Stab(S)$. These orbits are of the form $Stab(S)x$ for $x \in S$, i.e. cosets of $Stab(S)$. So S is a union of right $Stab(S)$-cosets. \[\square\]

Lemma 2 Suppose the group G acts on a set S, $x \in S$, and $g \in G$. Then $gG \cdot x \cdot g^{-1} = G_{gx}$.

Proof of First Sylow Theorem:

Let p be a prime, $e \geq 1$ an integer, G a finite group of order $p^e m$ where $(p, m) = 1$. Let S be the set of all subsets of G of order p^e.

Claim: $|S| = (p^e m)^{p^e - 1}$ and is relatively prime to p.

Proof: The equation is standard. Note that

$$(p^e m)^{p^e - 1} = \frac{p^e m (p^e m - 1) \ldots (p^e m - p^e + 1)}{p^e (p^e - 1) \ldots 1}.$$

Also, p divides $p^e m - 1$ exactly k times

\iff p divides l exactly k times ($0 \leq l \leq p^e - 1$)

\iff p divides $p^e - l$ exactly k times. So $|S|$ is prime to p. This proves the claim. □.
Let G act on S by left multiplication. Since $(p, |S|) = 1$, there is an orbit of order not divisible by p, say the orbit of a subset S of G. Then $|\text{Stab}(S)|$ is a power of p by Lemma 1 above, and $|G/\text{Stab}(S)|$ is the size of the orbit, hence prime to p. So $|\text{Stab}(S)| = p^e$, which must therefore make $\text{Stab}(S)$ a Sylow p-subgroup. This proves the First Sylow Thm. QED

Proof of Second Sylow Theorem. Let H be a Sylow p-subgroup of G and K a subgroup of G such that $p \mid |K|$. Let K act on the set

$$G/H = \bigcup_{a \in G} aH$$

on the left. Since $(|G/H|, p) = 1$, there is a K-orbit of cardinality not divisible by p, call it $O = K \cdot aH$. The stabilizer of aH in G is aHa^{-1}, so in K it is KHa^{-1}.
We get a bijection

\[G \cong K/K_{\text{Natta}^{-1}} \]

which has cardinality prime to \(p \). So \(K_{\text{Natta}^{-1}} \) must be a Sylow \(p \)-subgroup of \(K \). \(\square \)

Proof of Third Sylow Theorem.

By our Corollary from last time, the Sylow \(p \)-subgroups are all conjugate to a given one, call it \(H \). So

\[\# \{ \text{Sylow } p\text{-subgroups} \} = [G : N_G(H)] \]

where

\[N_G(H) = \{ g \in G \mid ghg^{-1} = H \} \]

Now certainly \([G : N_G(H)] \mid [G : H] \)

since \(H \leq N_G(H) \). So we need to show that this number is congruent to 1 mod \(p \).
So, let’s break the set T of Sylow p-subgroups into orbits under the action of the Sylow p-subgroup H by conjugation. Every orbit is in bijection with a set of left cosets H/K for some subgroup $K \leq H$, so every orbit has size p^k for some $0 \leq k \leq e$. When can an orbit have size $p^0 = 1$? Iff it consists of a Sylow p-subgroup $L \leq G$ such that $H \leq N_G(L)$. Then H and L are both Sylow p-subgroups of $N_G(L)$, hence are conjugate in $N_G(L)$. Since L is normal in $N_G(L)$, it follows that $H = L$.

So there is a unique such orbit, consisting just of H, and every other orbit has size divisible by p. This completes the proof. \[\square \]