Math 416 Problems

Problem 1. Let \(A = \begin{pmatrix} 3 & 0 & 3 \\ 2 & 6 & -2 \\ 3 & 0 & 3 \end{pmatrix} \).

1. Compute the characteristic polynomial of \(A \). Compute the eigenvalues of \(A \).
2. For an eigenvalue \(\lambda \) of \(A \), the \(\lambda \)-eigenspace of \(A \) is the null space \(N(A - \lambda I) \). Compute the eigenspace of \(A \) for each eigenvalue of \(A \).
3. Is there a basis of \(\mathbb{R}^3 \) consisting of eigenvectors of \(A \)? If yes, find one, and compute a matrix \(Q^{-1} \) such that \(QAQ^{-1} \) is a diagonal matrix.

Problem 2. Suppose a \(3 \times 3 \) matrix \(B \) has as its characteristic polynomial \(p_B(t) = (-t)(t-6)^2 \). Suppose \(B \) is diagonalizable. Find all possible diagonal matrices \(D \) that are similar to \(B \).

Problem 3. Let \(A_t = \begin{pmatrix} 1 & 1 \\ 0 & t \end{pmatrix} \); this is a matrix that depends on the variable \(t \) (if you like you can think of it as a function \(\mathbb{R} \to \text{Mat}_{2 \times 2}(\mathbb{R}) \)). For which values of the variable \(t \in \mathbb{R} \) is \(A_t \) diagonalizable? Justify.

Problem 4. Suppose that \(T : V \to V \) is a linear operator, where \(V \) is a finite-dimensional vector space. Suppose that \(W \subseteq V \) is any subspace of \(V \) for which \(T(W) \subseteq W \) (that is, \(T(w) \in W \) for every \(w \in W \)), and write \(T|_W : W \to W \) for the restriction of \(T \) to \(W \). Show that the eigenvalues of \(T|_W \) are a subset of the eigenvalues of \(T \).

Problem 5. Let \(N = \begin{pmatrix} 0 & 1 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 1 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 0 & 1 \\ 0 & 0 & 0 & 0 & \ldots & 0 \end{pmatrix} \) of size \(n \times n \).

1. Compute the characteristic polynomial of \(N \).
2. Show that \(N^n = 0 \) but that \(N^{n-1} \neq 0 \). [The main challenge may be to find a good formula for \(N \).]

Problem 6. Suppose that \(V \) has dimension \(n \) and that \(T : V \to V \) is a linear operator whose characteristic polynomial is \(p_T(t) = (-t)^n \). Show by strong induction on \(n \) that \(T^n = 0 \), where \(T^n \) means \(T \circ T \circ \cdots \circ T \), the composition of \(T \) with itself \(n \) times. We say \(T \) is \textit{nilpotent of index at most} \(n \). [Hint: for \(n = 1 \) this is easy. Now for the induction step, assume true for linear operators on \(k \)-dimensional vector spaces where \(k \leq n - 1 \), and consider \(V \) of dimension \(n \). Show that \(\mathcal{R}(T) \) is at most \((n - 1) \)-dimensional, and that \(T(\mathcal{R}(T)) \subseteq \mathcal{R}(T) \). Apply the inductive hypothesis to \(T|_{\mathcal{R}(T)} \) using the result of Problem 4 etc.]

1