Math 416 Problems

Problem 1. Let \(A = \begin{pmatrix} 3 & 0 & 3 \\ 2 & 6 & -2 \\ 3 & 0 & 3 \end{pmatrix} \).

1. Compute the characteristic polynomial of \(A \). Compute the eigenvalues of \(A \).
2. For an eigenvalue \(\lambda \) of \(A \), the \(\lambda \)-eigenspace of \(A \) is the null space \(N(A - \lambda I) \). Compute the eigenspace of \(A \) for each eigenvalue of \(A \).
3. Is there a basis of \(\mathbb{R}^3 \) consisting of eigenvectors of \(A \)? If yes, find one, and compute a matrix \(Q^{-1} \) such that \(QAQ^{-1} \) is a diagonal matrix.

Solution. The characteristic polynomial is \(p_A(t) = -t(6 - t)^2 \). The eigenvalues are 0 and 6. The 6-eigenspace of \(A \), i.e., the null space of \(A - 6I \), is \(\{(a, b, a) \mid a, b \in \mathbb{R}\} \). The 0-eigenspace of \(A \), i.e., the null space of \(A \), is \(\{(c, -2c/3, -c) \mid c \in \mathbb{R}\} \). One possible basis of eigenvectors is \((1, 0, 1), (0, 1, 0), (1, -2/3, -1)\). We then get

\[
Q^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -2/3 \\ 1 & 0 & -1 \end{pmatrix}.
\]

I will leave it to you to compute the inverse, but remember you can do this by forming the \(3 \times 6 \) matrix \((Q^{-1}|I_3)\) and finding its RREF, which will be \((I_3|Q)\).

Problem 2. Suppose a \(3 \times 3 \) matrix \(B \) has as its characteristic polynomial \(p_B(t) = (-t)(t-6)^2 \). Suppose \(B \) is diagonalizable. Find all possible diagonal matrices \(D \) that are similar to \(B \).

Solution. A diagonal matrix similar to \(B \) has the same characteristic polynomial as \(B \). If \(D \) is a diagonal matrix with diagonal entries \(d_1, d_2, d_3 \) then its characteristic polynomial is easily computed to be \(p_D(t) = (d_1 - t)(d_2 - t)(d_3 - t) \). It follows that for any diagonal matrix similar to \(B \) above has diagonal entries 0, 6, 6 in some order. Any two diagonal matrices with the same unordered list of diagonal entries are similar! [You can check this yourself in the \(3 \times 3 \) case.]. Thus, the possibilities are

\[
\begin{pmatrix} 0 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix}, \begin{pmatrix} 6 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 6 & 0 \end{pmatrix}, \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
\]

\(\square \)

Problem 3. Let \(A_t = \begin{pmatrix} 1 & 1 \\ 0 & t \end{pmatrix} \); this is a matrix that depends on the variable \(t \) (if you like you can think of it as a function \(\mathbb{R} \to \text{Mat}_{2 \times 2}(\mathbb{R}) \)). For which values of the variable \(t \in \mathbb{R} \) is \(A_t \) diagonalizable? Justify.

Solution. The characteristic polynomial of \(A_t \) is \(p_{A_t}(s) = (1 - s)(t - s) \). This has distinct roots if \(t \neq 1 \), so \(A \) is diagonalizable if \(t \neq 1 \). If \(t = 1 \), then the only eigenvalue of \(A_t \) is 1; in that case, if \(A_1 \) were diagonalizable, we would need to have nullity\((A - I_2) = 2 \), but \(A_t - I_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \), which is not the zero matrix, so its nullity is less than 2 = \(\text{dim}(\mathbb{R}^2) \). Thus if \(t = 1 \) then \(A_t \) is not diagonalizable. \(\square \)

Problem 4. Suppose that \(T : V \to V \) is a linear operator, where \(V \) is a finite-dimensional vector space. Suppose that \(W \subseteq V \) is any subspace of \(V \) for which
We say that an integer \(k \) is \(\leq n \) times. Now for the induction step, assume true for linear operators on a \(k < n \)-dimensional vector space with characteristic polynomial \(p \). If \(T \) is any linear operator on a \(k < n \)-dimensional vector space, so \(T^k \) is nilpotent of index at most \(n \). Thus, by the inductive hypothesis, we have \(p(T) = 0 \), proving the inductive step, hence completing the proof.

Problem 5. Let \(N = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \) of size \(n \times n \).

1. Compute the characteristic polynomial of \(N \).
2. Show that \(N^n \) is upper triangular with all diagonal entries equal to \(-t \), so \(p_N(t) = \det(N - tI_n) = (-t)^n \). A good way of describing \(N \) is that, on the standard basis, \(Ne_j = e_{j-1} \) for \(j > 1 \), and \(Ne_1 = 0 \). Then for every standard basis vector, \(N^k e_j = e_{j-k} \), where we interpret \(e_\ell \) to be the zero vector for \(\ell \leq 0 \). So \(N^n e_j = 0 \) for all \(j \), thus \(N^n = 0 \); whereas \(N^{n-1} e_n = e_1 \), nonzero.

Problem 6. Suppose that \(V \) has dimension \(n \) and that \(T : V \rightarrow V \) is a linear operator whose characteristic polynomial is \(p_T(t) = (-t)^n \). Show by strong induction on \(n \) that \(T^n = 0 \), where \(T^n \) means \(T \circ T \circ \cdots \circ T \), the composition of \(T \) with itself \(n \) times. We say \(T \) is nilpotent of index at most \(n \). [Hint: for \(n = 1 \) this is easy. Now for the induction step, assume true for linear operators on \(k \)-dimensional vector spaces where \(k < n - 1 \), and consider \(V \) of dimension \(n \). Show that \(\mathcal{R}(T) \) is at most \((n-1) \)-dimensional, and that \(T(\mathcal{R}(T)) \subseteq \mathcal{R}(T) \). Apply the inductive hypothesis to \(T|_{\mathcal{R}(T)} \) using the result of Problem 4 etc.]

Solution. If \(T \) is a linear operator on a \(1 \)-dimensional vector space \(V \) with characteristic polynomial \(-t\), then the matrix of \(T \) in any basis of \(V \) must be \(0 \). So \(T^1 = T = 0 \). Now, assume that for all \(k < n \), if \(T \) is any linear operator on a \(k \)-dimensional vector space with \(p_T(t) = (-t)^k \) then \(T^k = 0 \). Let \(V \) be an \(n \)-dimensional vector space and \(T : V \rightarrow V \) a linear operator. Let \(W = \mathcal{R}(T) \). Then for every \(w \in W \), we have \(T(w) \in \mathcal{R}(T) \), i.e. \(T(W) \subseteq W \). Assume also that \(p_T(t) = (-t)^n \); then 0 is an eigenvalue of \(T \), so \(\mathcal{N}(T) \neq \{0\} \), and hence \(\dim(W) < n \). By the result of Problem 4, we have that the eigenvalues of \(T|_W \) are a subset of the eigenvalues of \(T \); but by assumption the only eigenvalue of \(T \) is 0, so the only eigenvalue of \(T|_W \) is zero, and writing \(k = \dim(W) < n \) we have that the characteristic polynomial of \(T|_W \) is \((-t)^k \). Thus, by the inductive hypothesis, we have \((T|_W)^k = 0 \). Now for any \(v \in V \), \(T^n(v) = T^{n-1}(w) \) where \(w = T(v) \in W \), and since \(n - 1 \geq k \) we have \(T^{n-1}(w) = 0 \). Thus \(T^n = 0 \), proving the inductive step, hence completing the proof.