last time used lift to $M_g(n)$ of conical action on $U(1)^n/G$, then adjusted by a Hamiltonian action, to try to compute Betti numbers of $M_g(n)$ using Biatyukii-Birkula. Not clear why it would always work, though (and in fact it needn’t—well, in a sense that fixed point sets may be complicated).

Instead I will explain a different approach, carried out by me in joint work w/ McCarthy.

Idea: M a smooth variety. Suppose we could describe the Poincaré dual to $[\Delta]$, $\Delta \subset M \times M$ diagonal, as $[\Delta] = \sum \text{Pic} \cdot \text{up}_{\mathbb{P}^2 di}(\chi) \cdot M \times M \overset{\text{proj}_{\mathbb{P}^2}}{\longrightarrow} M$.

Would like to use projection formula:

$$p^*_x([\Delta] \cup p^*_2 \alpha) = p^*_x([x \cdot p^*_2 \alpha], \quad \Delta \overset{i}{\longrightarrow} M \times M$$

$$= i^* p^*_2 \alpha = \alpha.$$

Then replace $[\Delta]$ by RHS of (χ), get

$$\alpha = p^*_x(\sum p^*_x \text{Pic} \cdot \text{up}_{\mathbb{P}^2 di} \cup p^*_2 \chi) = p^*_x(\sum p^*_x \text{Pic} \cup p^*_2 \chi (\text{div} \chi))$$

$$= \sum\text{Pic} \cdot (\sum_{\text{div} \chi}).$$

So, we would see that

$$\text{Pic} \text{ span } H^*(M).$$

There are issues with the above “argument,” however.
(1) we repeatedly use integration over M — every time we want to apply $p_!$, it's integration over fibers. That won't work unless M is compact.

Analogously on sheaves, want to use

$$p_!(\mathcal{O}_\Delta \otimes p_2^* \alpha) = p_!(i_* i^! \mathcal{O}_M \otimes p_2^! \alpha)$$

$$= p_!(i_* i^! p_2^* \alpha) = \alpha'$$

replace \mathcal{O}_Δ by resolution

$$0 \to \mathcal{E}_r \to \ldots \to \mathcal{E}_0 \to \mathcal{E}_0 \to \mathcal{O} \to 0 \quad (\ast)$$

get $\alpha \equiv (\mathcal{E}_r \otimes H^0(\mathcal{F} \otimes \alpha)) \to \ldots \to \mathcal{E}_0 \otimes H^0(\mathcal{F}_0 \otimes \alpha))$

But if M is noncompact, $H^0(\mathcal{F}_i \otimes \alpha)$ is probably infinite-dimensional. Hard to use to get liftof a coherent sheaf α.

(2) Anyway, how would you ever find (k), or (k^n)?

It turns out both problems are best solved by **viewing** for quiver varieties by viewing $\nu \mathcal{M}(k)$ as "moduli space of stable sheaves on Spec T_0^n" as an inspiration for compactifying $\mathcal{M}(k)$.
Example: Recall the case that gave \(M(n) \cong (\mathbb{P}^1)^n \),

i.e., \(Q = \mathbb{C}^{n \times n}, \quad G = \text{GL}(n), \quad x(g) = \det(g) \).

Here the preprojective algebra is a quotient of

\[\mathbb{C}Q^{dbl} = \mathbb{T}_0^{\circ} \langle x \otimes e_1 \otimes e_2 \otimes \ldots \rangle, \]

\[e_1^2 = 1, \quad e_1 e_2 = e_2 e_1, \quad e_1 x = 0 = x e_1, \quad e_2 y = 0 = y e_2, \]

Also have \(p = (xy - yx + ij) \) at vertex 2.

So \(\mathbb{C}Q^{dbl} / p \cong \mathbb{T}_0^{\circ} \) doesn't really look like \(\mathbb{C} \langle xy \rangle \),

but like some modified version. Now the loss there's

some open set of modules or "sheaves on \(\text{Spec } \mathbb{T}_0^{\circ} \)"

i.e. \(\mathbb{T}_0^{\circ} \)-modules, that looks like an open set of

modules of sheaves on \(\text{Spec } \mathbb{C} \langle xy \rangle \).

Could try to use either to compactify.

\(\mathbb{A}^2 \setminus \{0\} \mapsto (\mathbb{P}^1)^2 \setminus \{0\}, \) Hilbert scheme of points on \(\mathbb{P}^2 \).

It's smooth and projective!

But I have no real idea how to generalize.

Take as inspiration! Find "Proj \(A \)" with

a localization \(A[T]/T \cong \mathbb{T}_0^{\circ} \).

Simple answer: \(A = \mathbb{T}_0^{\circ}[T], \) graded so that

\(\deg(a) = 1 \) for \(a \in H, \quad \deg(e_i) = 0, \quad \deg(t) = 1. \)
Aside. This is almost always a 3-Calabi-Yau algebra, Jacobian algebra of triplet quiver Q obtained by adding a loop at each vertex, labelled t_v, and using superpotential $\sum \left(\sum_{i \in I} E(a) a^a t_i \right)_{s(a) = i}$.

I would like to compactify $M_g(n)$, then, by taking a moduli space of $\text{"sheaves on Proj } A\text{"}$, i.e. graded A-modules modulo equivalence relation.

Recall

Thm [Serre] If R is a k-g. comm. k-algebra, nonnegatively graded with $R_0 = k$, and generated in degree 1, then

$$\text{Col(Proj } A) \cong A\text{-mod}/\text{Tails } (A),$$

where $A\text{-mod}$ is category of k-g. graded A-modules,

$\text{Tails } (A) = \text{category of bounded graded } A\text{-modules}$,

i.e. M s.t. $M_k = 0 \forall k \gg 0$.

[Recall constructions of $M \rightarrow \hat{M}$.

$T(\chi) < T$.]
Now suppose that A is any nonnegatively graded (w/ A_0 semisimple, say) associative algebra. Consider

$$\text{Coh (Proj} A) = A \text{mod } \text{Tor}(A),$$

even without making sense of any space $\text{Proj} (A)$. The goal is to "understand"/describe a moduli's space of objects in $\text{Coh (Proj} A)$.

Suppose \mathcal{F} is a sheaf on a proj. variety Y with 0-dim'l support. Then $\mathcal{F} \otimes \mathcal{O}(n) \cong \mathcal{F}$, non-canonically, and thus $\mathcal{F} \otimes \mathcal{O}(n) \cong \mathcal{F}$ for all $n \geq 0$. Thus

\[\mathbb{P}^n \mathcal{F} \text{ has constant Hilbert series:} \]

\[\text{dim } \mathbb{P}^n \mathcal{F} = \text{dim } H^0(Y, \mathcal{F} \otimes \mathcal{O}(n)) = \text{dim } H^0(Y, \mathcal{F}) \]

for all $n \geq 0$.

In some sense, we have $\mathcal{M} = \mathbb{P}^n \mathcal{M}$, so to study 0-dim'l sheaves (i.e. sheaves with 0-dim'l support) on $Y = \text{Proj}(R)$ we may start with \mathcal{M} as an A-module of constant Hilbert series.

Fact in projective algebraic geometry. For any bounded family of coherent sheaves $\{ \mathcal{F}_x \}$, there is an $A(\alpha)$ sit.

\[\mathbb{P}^n (\mathcal{F}_x) \to A(\alpha) \]

as a graded R-module, determines \mathcal{F}_x.
Naive Hope: If R is generated in deg 1 and is quadratic, then $\Gamma^*(g)/\Gamma^{\geq 3}(g) \to \infty$ is enough if g has 0-dimensional support.

Use this as an ansatz to prescribe a compactification of $\text{M}_0(n)$.

Graded-tripled quiver: Given quiver Q, vertex set I, edge set Ω, $Q^{gr}tr$ has

vertices $I \times \{0,1,2\}$,

edges $\Omega \times \{0,1\}$ α, $\overline{\alpha} \times \{0,1\}$ α, $I \times \{0,1\}$ $\overline{\alpha}i,j$.

$s(\alpha) = (\alpha, \{0\}, s, t(\overline{\alpha}) = (t(\alpha), 1)$
$s(\overline{\alpha}) = (t(\alpha), \{0\}, s, t(\alpha) = (s(\alpha), \{\})$
$s(\overline{\alpha}) = (i, j)$ $t(\overline{\alpha}) = (i, j+1)$.

Ex. \[\begin{array}{ccc}
\alpha & \rightarrow & \overline{\alpha} \\
\alpha & \leftarrow & \overline{\alpha}
\end{array} \]
Recall \(A = T^0[\tau] \), graded by \(e_i \in A_0 \), \(a \in A_1 \), \(\omega \in A_2 \), \(t \in A_1 \).

Suppose \(B \) is a graded \(C \)-algebra. Define
\[
B[s] = \{ \sum_i b_i s^i \mid b_i \in B_i \}, \\
\text{with } B = B_0 s^0 < B[s],
\]
as a subalgebra and \(s - b = b(s + k) \), \(b \in B_k \).

i.e. \([s, b] = kb, b \in B_k\).

Given graded left \(B \)-module \(M \), get \(B[s] \)-module structure on \(M \)
by letting \(s \cdot m = km \), \(m \in M_k \), acts semisimply on \(M \),
i.e. \(M = \bigoplus_{\lambda} M_{\lambda} \) where \(s \cdot m = \lambda m \) \(\forall \lambda \in \mathbb{C} \).

Conversely, given \(s \)-semisimple \(B[s] \)-module \(M \)
with \(s \)-eigenvalues in \(\mathbb{Z} \), grade \(M \) by \(s \)-eigenvalue
and get a graded \(B \)-module.

Lemma The functors
\[
\begin{array}{ccc}
B-Gr & \xrightarrow{\cong} & B[s]-\text{Mod}_{\mathbb{Z}-ss} \\
\text{graded left} & \text{B-modules} & \text{left B[s]-modules on which}
\end{array}
\]
acts semisimply with
integral eigenvalues
are equivalences of categories.

Similarly, can form $A[s^3] = (A/A_{\geq 3})^s[s^3]$, as well as $TT^0Q[t] \{ s \} = (TT^0Q[t] / TT^0Q[t]_{\geq 3}) \{ s \}$.

We define a map

$$CQ^{gr} \{ s^3 \} \rightarrow TT^0Q[t] \{ s \} \text{ by }$$

\[
\begin{align*}
s & \mapsto s \\
\text{edge} \rightarrow e_{ij} & \mapsto te_i e_s(s-1)(s-2) \frac{s-j}{s-j} & j = 0, 1 \\
\text{edge} \rightarrow a_j & \mapsto a_s(s-1)(s-2) \frac{s-j}{s-j} & j = 0, 1 \\
\text{non-edge} \rightarrow e_{ij} & \mapsto e_i e_s(s-1)(s-2) \frac{s-j}{s-j} & j = 0, 1, 2
\end{align*}
\]

The induced functor $TT^0Q[t] - \text{Mod} \rightarrow CQ^{gr} - \text{Mod}$ is an equivalence of categories. The projective relation $q^{[t]}$ maps to $\sum q^{[t]} q_0$, relation that t is central.

The induced relation $q^{[t]}$ maps to $q e_s a_0 = e_s a_0 q_0$ for $a_0 e_s H$.

Thus, we can use $CQ^{gr} \{ s \} / \{ t \}$ to try to construct compactification of M_g.
So, consider

\[\text{Rep}(\mathbb{Q}^{gtr}, n) \supset \text{Rep}(\bar{\mathbb{A}}, n) = \{ M \mid \text{rels (1) satisfied in } M \} \]

steps \(M \) with

\[\dim \ e_{i;j} M = N_i \]

\(j = 0,1,2 \)

Have group \(G^{gtr} = G \times \mathbb{R} \times \mathbb{R} \) acting, with \(G \times \mathbb{R} \times \mathbb{R} \) acting on \(j \)-th layer of vertices.

Prop For any character \(\Theta : G^{gtr} \to \mathbb{G}_m \), the GIT quotients

\[\text{Rep}(\mathbb{Q}^{gtr}, n) / G^{gtr}, \Xi \]

\[\text{Rep}(\bar{\mathbb{A}}, n) / G^{gtr} \Xi \]

are either empty or projective.

Reason No nonconstant functions - quivers have no cycles.

Now, suppose \(M \) is a \(C^{gtr} \)-module with all arrows

\[e_{i;j} : M_j \to M_{j+1} \]

acting invertibly, i.e., as isomorphisms.

Use them to define isomorphisms

\[M_j = \bigoplus_{i \in I} e_{i;j} M \to M_{j+1} \quad \forall j = 0,1, \]

Use these to define \(T^{0} \)-action by:

\[a \mapsto a^{-1} \]

\[e_{i;j} \mapsto e_{i;j}^{-1} e_{i,0} e_{i,0} \]

Check It does satisfy relations.

Get functors from \(\bar{\mathbb{A}} \)-modules w/ \(e_{i;j} \)'s invertible to \(T^{0} \)-modules.