Math 416 Homework 8

Problem 1.
(1) Suppose \(E \) is the elementary matrix obtained from \(I_n \) by the row operation \(R \), that is, \(I_n \xrightarrow{R} E \).

Prove that for all \(A \in M_{n \times n}(\mathbb{R}) \) one has \(A \xrightarrow{R} EA \). Said another way, left-multiplication by \(E \) implements the row operation that built \(E \) in the first place.

(2) Prove the corresponding statement for elementary column operations.

Problem 2. A matrix \(Q \in M_{n \times n}(\mathbb{R}) \) is called orthogonal if \(QQ^t = I_n \).

(1) Prove that if \(Q \) is orthogonal then \(\det(Q) = \pm 1 \).

(2) Give examples of orthogonal matrices for \(n = 2 \) with both possible values of the determinant.

Problem 3. Suppose \(A, B \in M_{n \times n}(\mathbb{R}) \) satisfy \(AB = I_n \).

(1) Use the determinant to prove that \(A \) is invertible.

(2) Prove or disprove: \(B = A^{-1} \).

Problem 4. In Section 5.1 of [FIS], do Problem 2 parts (a) and (c).

If \(T : V \to V \) is a linear transformation (called a linear operator on \(V \)), an eigenvector of \(T \) with eigenvalue \(\lambda \) (a scalar) is a nonzero vector \(v \) for which \(Tv = \lambda v \). We say \(\lambda \) is an eigenvalue of \(T \) if there is a nonzero vector \(v \in V \) that is an eigenvector of \(T \) with eigenvalue \(\lambda \).

Problem 5. Let \(T \) be a linear operator on a finite-dimensional vector space \(V \).

(1) Show that \(T \) is invertible if and only if 0 is not an eigenvalue of \(T \).

(2) If \(T \) is invertible, show that \(\lambda^{-1} \) is an eigenvalue of \(T^{-1} \) if and only if \(\lambda \) is an eigenvalue of \(T \).

Problem 6. Suppose \(T : V \to V \) is a linear operator with \(V \) finite-dimensional. Suppose \(v \in V \) is an eigenvector of \(T \) with eigenvalue \(\lambda \). As usual, \(T^m : V \to V \) denotes composition of \(T \) with itself \(m \) times. Prove that \(v \) is also an eigenvector for \(T^m \) and give a formula for the corresponding eigenvalue.

Problem 7. In Section 5.1 of [FIS], do Problem 3(a).

Problem 8. In Section 5.1 of [FIS], do Problem 4 parts (b) and (h).