This course is about algebraic geometry. At its heart, this is the study of solutions of systems of polynomial equations.

We'll need a heavy dose of algebra in this class!

Review the basics of rings!

Almost all our rings will be commutative with 1. A ring homomorphism is assumed to take 1 to 1.

Field of Fractions

Let R be a ring. A field F together with a homomorphism $R \rightarrow F$ is a field of fractions of R if it has the following universal property:
every homomorphism $R \rightarrow K$ from R to a field K factors uniquely through F.
i.e. there is a unique homomorphism
\[F \xrightarrow{\alpha} K \] that makes
\[R \xrightarrow{i} F \]
\[f \xrightarrow{1} K \]
commute
(i.e. \(f = \alpha \circ i \)).

Prop. If \(R \) is a ring (commutative, with 1), then there is a field of fractions for \(R \).

Proof. Exercise. \(\square \)

Recall the def. of the polynomial ring \(R[X_1, \ldots, X_n] \) with coefficients in \(R \).
(formal expressions \(\sum a_I X^I \)).

Prop. If \(\phi : R \to S \) is a ring homomorphism and \(s_1, \ldots, s_n \in S \), there is a unique homomorphism \(\widetilde{\phi} : R[X_1, \ldots, X_n] \to S \).
such that $\tilde{\phi}(r) = \phi(r)$ for all $r \in R[x_1, \ldots, x_n]$, and

$\tilde{\phi}(x_i) = s_i$, $i = 1, \ldots, n$.

Proof. Uniqueness is clear. Existence amounts to checking that

$$(f + g)(s_1, \ldots, s_n) = f(s_1, \ldots, s_n) + g(s_1, \ldots, s_n)$$

and

$$(fg)(s_1, \ldots, s_n) = f(s_1, \ldots, s_n)g(s_1, \ldots, s_n)$$

for $f, g \in R[x_1, \ldots, x_n]$ which is easy. \square.

Cor. There is a canonical isomorphism

$$R[x_1, \ldots, x_n] \xrightarrow{\sim} R[x_1, \ldots, x_k][x_{k+1}, \ldots, x_n]$$

whenever $1 \leq k \leq n-1$.

For some other basic properties of rings that we will need, read Ch.I, Section 1 of Fulton, and, where necessary, re-read Herstein and your notes from last semester.
Recall the definition of an ideal of a ring \(R \) (as always, commutative with 1).

A collection of ideals

\[I_1 \leq I_2 \leq I_3 \leq \ldots \leq R \]

is called an ascending chain of ideals.

It is stationary if there exists \(k \) such that \(I_l = I_k \) for all \(l \geq k \).

\(R \) is noetherian if every ascending chain of ideals in \(R \) is stationary.

Hilbert Basis Theorem: If \(R \) is noetherian, so is \(R[x] \).

Cor: If \(R \) is noetherian, so is \(R[x_1, \ldots, x_n] \).

Cor: If \(k \) is a field, then \(k[x_1, \ldots, x_n] \) is noetherian.

Proof. The only ideals in \(k \) are
and \(k \), so \(k \) is noetherian.

The conclusion follows from the previous corollary.

To prove Hilbert Basis Theorem, we first prove:

Lemma \(R \) is noetherian iff every ideal of \(R \) is finitely generated.

[Recall: the ideal generated by a subset \(S \subseteq R \) is]

\[
(S) = \bigcup_{S \subseteq I, I \text{ an ideal of } R} I
\]

An ideal \(I \subseteq R \) is finitely generated if there exists a finite subset \(S \subseteq I \) such that \(I = (S) \).

In this case, writing \(S = \{s_1, \ldots, s_n \} \), we have \(I = \{a_1s_1 + \cdots + a_ns_n | a_i \in \mathbb{R} \} \).
Proof of Lemma. Suppose first that every ideal of R is finitely generated.

Let $\mathcal{I}_1 \subseteq \mathcal{I}_2 \subseteq \ldots$ be an ascending chain of ideals. Then

$$\mathcal{I} = \bigcup_{k} \mathcal{I}_k$$

is an ideal. Write $\mathcal{I} = (s_1, \ldots, s_n)$. Then each of s_1, \ldots, s_n appears in one of the \mathcal{I}_k, say $s_1 \in \mathcal{I}_{k_1}, \ldots, s_n \in \mathcal{I}_{k_n}$. So $(s_1, \ldots, s_n) \subseteq \mathcal{I}_m$ where

$$m = \max \{ k_1, \ldots, k_n \}.$$

Thus $\mathcal{I} = (s_1, \ldots, s_n) \subseteq \mathcal{I}_m \subseteq \mathcal{I}_k \subseteq \mathcal{I}$ for all $k \geq m$, and the chain is stationary.

Conversely, suppose R is noetherian, and let $I \leq R$ be an ideal; we may assume $I \neq 0$. Choose
any nonzero $s_j \notin I$ and let $I_j = (s_j)$. Given $I_k = (s_1, \ldots, s_k) \subseteq I$, if

$I_k \neq I$ choose some $s_{k+1} \in I \setminus I_k$

and let $I_{k+1} = (s_1, \ldots, s_{k+1})$.

Continuing in this way we get an ascending chain

$I_1 \subset I_2 \subset \ldots$ which is not stationary, a contradiction. So it can't be the case that $I_k \neq I$ for every k, i.e. for some k we eventually arrive at

$(s_1, \ldots, s_k) = I_k = I$.

Finally, Proof of Hilbert Basis Theorem:

let $I \subseteq R[x]$ be an ideal; we must prove I is finitely generated.

Def: let L be the set of leading
coefficients of elements of I.

Claim L is an ideal of R.

Proof is an easy exercise, we'll discuss briefly in class.

By assumption there exist $c_1, \ldots, c_n \in R$ such that $L = (c_1, \ldots, c_n)$. By def. of L, there are $f_1, \ldots, f_n \in I$ s.t. f_i has leading coeff. c_i. Let

$N = \max \{ \deg (f_i) \mid i = 1, \ldots, n \}$.

For each m, $0 \leq m \leq N-1$, let

$L_m = \{ \text{leading coeff. of polynomials } g \in I \text{ with } \deg (g) \leq m \}$

Claim $L_m \subset R$ is an ideal.

Similarly to what we did for L, **And our previous lemma!**
we choose polynomials \(\{ f_m, k \} \) of degree \(\leq m \) whose leading coeff. generate \(L_m \).

Finally, we let

\[
I' = \bigcup_{\alpha M \leq N-1} \{ f_m, k \} \cup \{ f_1, \ldots, f_\alpha \}.
\]

Claim: \(I' = I \).

Certainly \(I' \subseteq I \) since \(I' \) is generated by a subset of \(I \), suppose \(I' \neq I \), and let \(G \in I \) be an element of smallest degree not in \(I' \). If \(\deg(G) \geq N \), write the leading coefficient \(c \in \mathbb{L} \) of \(G \) as \(c = \sum_{i=1}^{n} a_i \cdot c_i \) with \(a_i \in \mathbb{R} \).

Let \(e_i = \deg(G) - \deg(f_i) \). Then

\[
\deg \left(G - \sum a_i \cdot c_i f_i \right) < \deg(G) \quad \text{since}
\]
G and $\Sigma a_i X^{e_i f_i}$ have the same leading term, namely c_i; so $G - \Sigma a_i X^{e_i f_i} \in I'$, so $G \in I'$. *.

Similarly, if $\deg(G) = m < N$,
write $c \in L_m$ as
\[c = \sum a_k c_m, \] where $a_k \in \mathbb{R}$ and c_m, k is the leading coeff. of f_m, k. Then
\[\deg(G - \sum a_k f_m, k) < m \] so $G - \sum a_k f_m, k \in I'$ and $G \in I'$. *.

This completes the proof. *.
A calculation: Let \(R = \mathbb{Z}[x] \),
\(I = (f_1 + px^2 \mid p \text{ prime}) \subseteq \mathbb{Z}[x] \).

With notation as in Hilbert Basis Theorem, \(L = (\text{leading coeff. of poly in } I \rangle) \supseteq (\mathbb{Q} \mid p \text{ prime}) \).

Now \(3 - 2 = 1 \in (\mathbb{Q} \mid p \text{ prime}) \), so \(L = \mathbb{Z} \).

Set \(h = 2x^2 + 1 \), \(g = 3x^3 + 1 \). Then

\[-2xg + (3x^2 - 1)h = x^2 - 2x - 1 = : f \]

has leading coeff. 1. By proof of Hilbert Basis Theorem, we should then find \(L_0, L_1 \subseteq \mathbb{Z} \) and choose polynomials whose leading coeff. generate \(L_0, L_1 \).

This is harder [why?]. After some calculation, I found

\[5(3x^3 + 1) - 15x^2(2x^2 + 1) + 65x^5 + 1 = 11 \in I.\]

Now

\[-x^{11} + 11 + (11x^{11} + 1) = 1 \in I, \quad \text{so}\]

\[I = \mathbb{Z}[x]. \quad \text{So trying to carry out Hilbert we find } L_0 = \mathbb{Z}, \quad L_1 = \mathbb{Z} \quad \text{but also} \quad \text{just } \quad I = \mathbb{Z}[x].\]