Math 500, 9/20/04.

Let G be a group. Define subgroups $G^{(i)}$ of G by $G^{(1)} = [G, G]$ and, for $i > 1$,
$G^{(i+1)} = [G^{(i)}, G^{(i)}]$.

Then
$G = G^{(0)} \supseteq G^{(1)} \supseteq G^{(2)} \supseteq \ldots$
is the derived series and $G^{(i)}$ the ith derived subgroup
of G.

Exercise For all i, $G^{(i)}$ is normal in G.

Def G is solvable if $G^{(n)} = \{e\}$ for some $n > 0$.

Example If $n \geq 5$, then S_n is not solvable.

Indeed, we have
$[S_n, S_n] = G^{(1)} \supseteq [A_n, A_n]$.

Since $[A_n, A_n] \neq \{e\}$ (A_n is not abelian),
and A_n is simple, it follows from the exercise
that $[A_n, A_n] = A_n$. So $G^{(1)} \supseteq A_n$.

By induction, we get $G^{(n)} \supseteq A_n$ for all $n \geq 1$.

Prop. Every nilpotent group is solvable.

Proof. By construction, \(G^{(i)} \leq G^{(i+1)} \) for all \(i \geq 1 \).
If \(G_n(G) = \{e\} \) then \(G_n = \{e\} \).

Def. A subnormal series
\[
G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \ldots \supseteq G_n = \{e\}
\]
is a composition series if each factor \(G_i/G_{i+1} \) is simple. The subnormal series is a solvable series if each \(G_i/G_{i+1} \) is abelian.

Def. A 1-step refinement of a subnormal series
\[
G = G_0 \supseteq G_1 \supseteq \ldots \supseteq G_n = \{e\}
\]
is a subnormal series of the form
\[
G = G_0 \supseteq G_1 \supseteq N \supseteq G_{i+1} \supseteq \ldots \supseteq G_n = \{e\}.
\]

A refinement of a subnormal series \(S \) is any subnormal series that can be obtained from \(S \) by a sequence of 1-step refinements.

The length of a subnormal series is the number of nontrivial subquotients \(G_i/G_{i+1} \).

A refinement is a proper refinement if its length is greater than the length of the original series.
Theorem

1) Every finite group has a composition series.
2) Every refinement of a solvable series is a solvable series.
3) A subnormal series is a composition series if and only if it has no proper refinements.

Proof. (1) By induction on the order of the group G, the case $|G| = 1$ being clear. For the inductive step, choose a maximal normal subgroup N of G. By induction, N has a composition series.

$$N = N_0 \supset N_1 \supset \cdots \supset N_n = e$$

Since G/N is simple, G has a composition series $G = G_0 \supset N = G_0 \supset N_1 \supset \cdots \supset N_n = e$.

(2) Suppose

$$G = G_0 \supset G_1 \supset \cdots \supset G_n = e$$

is a solvable series, and let

$$G_0 \supset G_1 \supset \cdots \supset G_i \supset N \supset G_{i+1} \supset \cdots \supset G_n$$

be a 1-step refinement. Then, G_i/N and N/G_{i+1} are abelian by:

Exercise. Every subgroup and every quotient group of an abelian group is abelian.

So the refinement is a solvable series.
(3) Let
\[G = G_0 \supseteq G_1 \supseteq \ldots \supseteq G_n = \{e\} \]
be a subnormal series, and
\[G = G_0 \supseteq G_1 \supseteq \ldots \supseteq G_i \supseteq N \supseteq G_{i+1} \supseteq \ldots \supseteq G_n = \{e\} \]
be a 1-step refinement. If this refinement is proper then \(G_{i+1} \nsubseteq N \subseteq G_i \) and \(N \) is normal in \(G_i \), so \(N / G_{i+1} \subseteq G_i / G_{i+1} \) is a nontrivial proper normal subgroup, so \(G \) cannot be a composition series. If \(G \) is not a composition series, then some \(G_i / G_{i+1} \) is not normal; letting \(K / G_{i+1} \subseteq G_i / G_{i+1} \) be a nontrivial proper normal subgroup, we get a proper refinement
\[G = G_0 \supseteq G_1 \supseteq \ldots \supseteq G_i \supseteq K \supseteq G_{i+1} \supseteq \ldots \supseteq G_n = \{e\} \]
of \(G \).

Theorem. A group \(G \) is solvable iff it has a solvable series.

Proof. If \(G \) is solvable, then the derived series is solvable: indeed,
\[G^{(i)}/G^{(i+1)} \text{ def } G^{(i)}/[G^{(i)}, G^{(i)}] \]
which is abelian by a homework problem.
Conversely, if
\[G = G_0 \supseteq G_1 \supseteq \ldots \supseteq G_n = \{e\} \]
is any solvable series for \(G \), we claim that
\[G_i \supseteq G^{(i)} \]
for all \(i \); we prove it by induction.

By definition, \(G_0/G_1 \) is abelian, so
\[[G/G_1] \subseteq G_1 \]
by a homework problem. As the inductive step, we have

\[G_i/G_{i+1} \text{ abelian } \Rightarrow G_{i+1} = [G^{(i)}, G_i] \subseteq [G_i, G_i] \subseteq G_{i+1}. \]

So \(G_i \supseteq G^{(i)} \) for all \(i \), and the series
\[\{e\} = G_n \supseteq G^{(n)} \].
So \(G \) is solvable.

Example

\[D_n = \langle a, b \mid a^n = b^2, aba = b \rangle. \]
Then
\[\langle a \rangle \trianglelefteq D_n \]
has index 2, so it's normal.

Thus \(\{e\} \trianglelefteq \langle a \rangle \trianglelefteq D_n \) forms a solvable series for \(D_n \), so \(D_n \) is solvable.
Def Two subnormal series \(S \) and \(T \) of a group \(G \) are equivalent if there is a one-to-one correspondence between the nontrivial subquotients of \(S \) and the nontrivial subquotients of \(T \) such that corresponding factors are isomorphic groups.

Lemma If \(S \) is a composition series of a group \(G \), then any refinement of \(S \) is equivalent to \(S \).

Proof. A composition series has no proper refinements, so any refinement has the same list of nontrivial subquotients.

Zassenhaus Lemma [Butterfly Lemma].

Let \(H_1, H_2, K_1, K_2 \) be subgroups of \(G \), with \(K_i \) normal in \(H_i \) \((i=1,2) \). Then

\[
\frac{(H_1 \cap H_2)K_1}{(H_1 \cap K_2)K_1} \cong \frac{(H_1 \cap H_2)K_2}{(K_1 \cap H_2)K_2}
\]

[Each denominator is normal in the numerator.]

Remark Zassenhaus proved it at the age of 21.
Claim.* Two upward lines meeting at a vertex means that vertex is the product of the two lower vertices. Two downward lines meet in the intersection of the upper vertices.

Proof of Lemma. For normality of \((H_1 \cap K_2)K_1\) in \((H_1 \cap H_2)K_1\), observe that, since \(K_2\) is normal in \(H_2\), it follows [exercise!] that \(H_1 \cap K_2\) is normal in \(H_1 \cap H_2\). Thus the product of \((H_1 \cap K_2)\) with \(K_1\) is normal in the product of \((H_1 \cap H_2)\) with \(K_1\). Switching the roles of \(i=1\) and \(i=2\) gives the other normality claim.

* This is routine, if slightly painful, to check.
Now we apply the Second Isomorphism Theorem:

\[
\frac{K_1 (H_1 \cap H_2)}{K_1 (H_1 \cap K_2)} = \frac{[K_1 (H_1 \cap K_2)] \cdot [H_1 \cap H_2]}{K_1 (H_1 \cap K_2)}
\]

by the butterfly diagram.

\[
\cong \frac{H_1 \cap H_2}{[K_1 (H_1 \cap K_2)] \cap (H_1 \cap H_2)} \quad \text{by the 2nd iso. thm.}
\]

\[
= \frac{H_1 \cap H_2}{(K_1 \cap H_2) (H_1 \cap K_2)} \quad \text{by the butterfly diagram.}
\]

The symmetric argument, switching \(i = 1 \) and \(i = 2 \), gives

\[
\frac{(H_1 \cap H_2) K_2}{(K_1 \cap H_2) K_2} \cong \frac{H_1 \cap H_2}{(K_1 \cap H_2) (H_1 \cap K_2)}
\]

This completes the proof.

Schreier Refinement Theorem: Any two subnormal series of a group \(G \) have subnormal refinements that are equivalent.

Before we prove it, we consider:
Jordan–Hölder Theorem

Any two composition series of a group are equivalent.

Proof. Composition series are subnormal series; hence by the Schreier refinement theorem they admit equivalent refinements. By our first lemma of the day, these refinements are equivalent to the two original composition series. \[\square\]

Proof of Schreier Refinement Theorem.

Let \(G = G_0 \supseteq \ldots \supseteq G_n = \emptyset \) and \(H = H_0 \supseteq \ldots \supseteq H_n = \emptyset \) be subnormal series.

Let \(G(i,j) = G_i \cap (G_i \cap H_j) \) and \(H(i,j) = H_j \cap (G_i \cap H_j) \). For all \(i, j \).

The Zassenhaus lemma applied to \(G_i, G_{i+1}, H_j, H_{j+1} \) tells us that
\(G(i,j;i) = G(i,i; (G(i,Hj;i)) \) is normal in \(G(i,i; (G(i,Hj;i))) = G(i,i) \).

So

\(G = G(0,0) \geq G(0,1) \geq \cdots \geq G(0,m) \geq G(1,0) \geq G(1,1) \)

gives a subnormal series; since \(G(i,0) = G_i \),
it refines the series \(\{G_i\} \). A symmetric argument shows that the \(H(i,j) \) refine the series of \(H_j \).

For each \(i,j \), the Zassenhaus Lemma gives

\[
\frac{G(i,j)}{G(i,j+1)} = \frac{G(i,i; (G(i,Hj;i)))}{G(i,i; (G(i,Hj;i)))} \simeq \frac{(G(i,Hj;i))Hj+i}{(G(i,Hj;i))Hj+i} = \frac{H(i,j)}{H(i,Hj)}
\]

This gives the desired one-to-one correspondence of the refinements. \(\square \).
Suppose
\[G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\} \]
is a composition series for \(G \). The factors \(G_i/G_{i+1} \) are simple groups. If \(G \) is finite, its composition factors are finite.

The finite simple groups have been classified.

In principle, then, the problem of classifying all finite groups may be reduced to the following problem: given known groups \(G, H \) [both finite], what are the possible groups \(L \) such that \(G \) is a normal subgroup of \(L \) and \(L/G \cong H \) ? Indeed, if we can solve that problem, then we start with a list \(C_1, \ldots, C_n \) of composition factors from among the finite simple groups. Supposing that a group \(G \) has a composition series as above with \(G_i/G_{i+1} \cong C_{i+1} \), \(C_{n-1} \), we can enumerate all possibilities for \(C_{n-1} \). Since \(C_n = G_n \) is normal in \(G_{n-1} \) with quotient (isomorphic to) \(C_{n-1} \); then, starting from each such possible \(G_{n-1} \), we can enumerate all possible \(G_{n-2} \) since \(G_{n-1} \) is normal in \(G_{n-2} \) with known quotient \(G_{n-2}/G_{n-1} \cong C_{n-1} \); and so on.
We write
\[\cdots \rightarrow G_{a+1} \xrightarrow{d_{a+1}} G_a \xrightarrow{d_a} G_{a-1} \rightarrow \cdots \]
for a sequence of groups and homomorphisms.

It is called a complex if \(\text{Im}(d_{a+1}) \leq \text{ker}(d_a)\)
for all \(a\), and an exact sequence if
\(\text{Im}(d_a) = \text{ker}(d_{a+1})\) for all \(a\).

An exact sequence
\[(*) \quad 1 \rightarrow G_2 \xrightarrow{\alpha} G_1 \xrightarrow{\beta} G_0 \rightarrow 1 \]
where 1 stands for the trivial group is called
an extension or a 1-extension. Note that \(\alpha\) is injective, \(\alpha(G_2) = \ker(\beta)\), and
\(G_0 \cong G_1 / \ker(\beta)\) in this case.

A lifting of \((*)\) is a function \(l : G_0 \rightarrow G_1\)
with \(\beta \circ l = 1_{G_0}\); note that this function
is not assumed to be a homomorphism.

A lifting that is a homomorphism is called a
splitting of \((*)\).

Example Suppose a group \(G\) has a subgroup \(H\) and a
normal subgroup \(N\) such that \(G = N \rtimes H\) and
\(NH = G = \{e\}\). Then we call \(G\) the (internal)
semidirect product of \(N\) by \(H\), written
\(G = N \times H\).
If H were also normal in G, then G would be isomorphic to the direct product $N \times H$.

Facts (i) Each $g \in G$ can be written uniquely as $g = nh$ with $n \in N$, $h \in H$.

Proof. If $n_1 h_1 = n_2 h_2$, $n_1 \in N$, $h_1 \in H$, then $n_2^{-1} n_1 = h_2 h_1^{-1} \in H \cap N = e G$, so $n_1 = n_2$, $h_1 = h_2$. □

(ii). Define

$$\phi_h : N \to N \text{ by } \phi_h(n) = hnh^{-1} \text{ for each } h \in H.$$

Then

(a) ϕ_h is an automorphism of N.
(b) $h \mapsto \phi_h$ defines a homomorphism

$$H \to \text{Aut}(N).$$

(c) For any $n_1 \in N$, $h \in H$, we have

$$(\phi_{h_1}(n_1 h_2))(n_2 h_2) = n_1 h_1 n_2 h_1^{-1} h_1 h_2 = n_1 \phi_{h_1}(n_2) h_1 h_2 \in NH.$$

Conversely, let N and H be groups, and let

$\Psi : H \to \text{Aut}(N)$ be a homomorphism,

written $h \mapsto \phi_h \in \text{Aut}(N)$.

Define a binary operation $\ast : (N \times H) \times (N \times H) \to N \times H$ by
(n_1, h_1) * (n_2, h_2) = (n_1 \phi_{h_1}(n_2), h_1 h_2).

Prop * is a group operation on N x H.

Proof:

\[
\begin{align*}
[(n_1, h_1) * (n_2, h_2)] * (n_3, h_3) &= (n_1 \phi_{h_1}(n_2), h_1 h_2) * (n_3, h_3) \\
&= (n_1 \phi_{h_1}(n_2), \phi_{h_1}(n_3), h_1 h_2 h_3)
\end{align*}
\]

while

\[
(n_1, h_1) * [(n_2, h_2) * (n_3, h_3)] = (n_1, h_1) * (n_2 \phi_{h_2}(n_3), h_2 h_3)
\]

\[
\begin{align*}
&= (n_1 \phi_{h_1}(n_2), \phi_{h_1}(n_3), h_1 h_2 h_3) \\
&= (n_1 \phi_{h_1}(n_2), \phi_{h_1 h_2}(n_3), h_1 h_2 h_3)
\end{align*}
\]

So * is associative.

\[
(n, h) * (e, e) = (n \phi_{h}(e), h e) = (n, h) = (e, e) * (n, h)
\]

by a similar computation.

So (e, e) is an identity element.

\[
\begin{align*}
(n, h) * (\phi_{h^{-1}}(n^{-1}), h^{-1}) &= (n,\phi_{h} \phi_{h^{-1}}(n^{-1}), h h^{-1}) \\
&= (n, \delta_{e}(n^{-1}), h h^{-1}) = (n^{n^{-1}}, h h^{-1}) = (e, e)
\end{align*}
\]

So inverses exist.

Thus * is a group operation.

Thus we write \(N \times H \) for this group.
Example Consider the homomorphism

$$\mathbb{Z}/2\mathbb{Z} \to \text{Aut}(\mathbb{Z}/n\mathbb{Z})$$

taking $$1 \mapsto \psi : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$$

$$\psi(k) = -k.$$

The semidirect product

$$\mathbb{Z}/n\mathbb{Z} \rtimes_{\psi} \mathbb{Z}/2\mathbb{Z}$$ has elements

$$a = (1,0)$$ and $$b = (0,1)$$, of orders $$n$$ and $$2$$, respectively. Moreover,

$$bab^{-1} = (0,1) \rtimes (1,1) = (-1,0) = a^{-1}.$$

So, this is the dihedral group $$D_n.$$

In the semidirect product $$N \rtimes_{\psi} H,$$ the functions

$$N \to N \rtimes_{\psi} H,$$ $$H \to N \rtimes_{\psi} H$$ given by inclusions of factors are homomorphisms. Moreover, $$N$$

is normal: for $$n \in N,$$ $$h \in H,$$

$$hnh^{-1} = (e, h) \rtimes (n, e) \rtimes (e, h^{-1})$$

$$= (\psi_h(n), h) \rtimes (e, h^{-1})$$

$$= (\psi_h(n), e) \in N.$$

So $$N \rtimes_{\psi} H$$ is the semidirect product of $$N$$ by $$H.$$
Prop. Let

\[1 \rightarrow N \rightarrow G \xrightarrow{\beta} H \rightarrow 1 \]

be an extension.

Then G is a semi-direct product

\[G \cong N \rtimes H \]

in such a way that \(\beta \) is the composite

\[G \cong N \times H \quad \xrightarrow{\beta} \quad H \]

if and only if the extension is split.

Pr. Suppose that \(\lambda : H \rightarrow G \) is a splitting of the extension. Then \(\lambda(H) \) and \(N \) are subgroups of \(G \) with \(N \) normal in \(G \). If \(g \in G \), let

\[a = \lambda\beta(g) \].

Then

\[ga^{-1} = g\lambda\beta(g^{-1}) \] and so

\[\beta(ga^{-1}) = \beta(g)\beta\lambda\beta(g^{-1}) = \beta(g)\beta(g^{-1}) = e \].

Thus \(ga^{-1} \in N \), say \(ga^{-1} = n \), and

\[g = na, \quad n \in N, \quad a \in \lambda(H) \].

So \(G = N \cdot \lambda(H) \).

If \(g \in N \cap \lambda(H) \), then

\[\beta(g) = e \]; but also \(g = \lambda(h) \) for some \(h \in H \),

so \(\lambda(h) = \lambda\beta(g) = \lambda\beta\lambda(h) = \lambda \beta(e) \lambda(h) \)

\[= \lambda(h) = g \], so \(g = e \).

Thus \(G = N \times \lambda(H) \).
Conversely, suppose

\[G \cong N \times H, \text{ and that, with a choice} \]

\[G \xrightarrow{\phi} N \times H \] of such an isomorphism, the composite diagram

\[
\begin{array}{ccc}
N \times H & \xrightarrow{\phi} & G \\
\downarrow{\pi} & & \downarrow{\beta} \\
N \times H / N & \xrightarrow{i} & H
\end{array}
\]

commutes.

Then, considering \(H \) as a subgroup of \(N \times H \) by \(h \mapsto (e, h) \), we have a homomorphism \(\psi_H : H \to G \) such that

\[\beta \circ \psi_H (h) = i \pi (h) = h \text{ for all } h \in H. \]

So \(\psi_H \) gives a splitting of \(\beta \). \qed