1. (2 points) Evaluate $\csc(2 \arccos \left(\frac{4}{5} \right))$.

2. (1 point) Which one of the following equations must hold in order for a function w to be continuous at a number p?

 (a) $\lim_{x \to 0} w(x) = w(p)$
 (b) $\lim_{x \to 0} w(x) = 0$
 (c) $\lim_{x \to 0} w(x) = p$
 (d) $\lim_{x \to p} w(x) = w(p)$
 (e) $\lim_{x \to p} w(x) = 0$
 (f) $\lim_{x \to p} w(x) = p$
 (g) $\lim_{x \to \infty} w(x) = w(p)$
 (h) $\lim_{x \to \infty} w(x) = 0$
 (i) $\lim_{x \to \infty} w(x) = p$
3. (2 points each) Evaluate the following limits. An answer of ‘does not exist’ is not sufficient. For infinite limits you must state if it is ∞ or $-\infty$.

(a) \[\lim_{x \to 4^-} \frac{\sqrt{x - 12}}{x - 4} \]

(b) \[\lim_{x \to 0} \left(\frac{1}{2x} - \frac{3}{x^2 + 6x} \right) \]
4. (3 points) Find all horizontal asymptotes on the graph of \(f(x) = \frac{16 + 15e^{2x}}{3e^{2x} - 8} \).