No calculators allowed.

Show sufficient work to justify each answer.

You have 15 minutes for this quiz.

1. (3 points) For the given function, use logarithmic differentiation to find a formula for \(\frac{dy}{dx} \) written in terms of \(x \).

\[y = \cos(3x)^{7x^5} \]

First, take the natural log of both sides:

\[\ln y = \ln(\cos(3x)^{7x^5}) \]

Now simplify using properties of log:

\[\ln y = 7x^5 \ln(\cos(3x)) \]

Now do implicit differentiation:

\[\frac{d}{dx}(\ln y) = \frac{d}{dx}(7x^5 \ln(\cos(3x))) \rightarrow \frac{y'}{y} = 35x^4 \cdot \ln(\cos(3x)) + (\ln(\cos(3x)))'7x^5 \]

\[\frac{y'}{y} = 35x^4 \cdot \ln(\cos(3x)) + (\frac{1}{\cos(3x)})(3x^5)7x^5 \rightarrow \frac{y'}{y} = 35x^4 \ln(\cos(3x)) + \frac{1}{\cos(3x)}(-3x^5 \sin(3x))7x^5 \]

\[\frac{y'}{y} = 35x^4 \ln(\cos(3x)) - \frac{21x^5 \sin(3x)}{\cos(3x)} \]

Using \(y = \cos(3x)^{7x^5} \) we get

\[y' = (\cos(3x)^{7x^5})(35x^4 \ln(\cos(3x)) - \frac{21x^5 \sin(3x)}{\cos(3x)}) \]

2. (3 points) Given that \(\frac{dw}{dr} = 0.75w \) and \(w(4) = 4 \), find a formula for \(w \) as a function of \(r \).

The function that satisfies the differential equation \(\frac{dw}{dr} = 0.75w \) is the exponential:

\[w(r) = Ce^{0.75r} \]

for some constant \(C \).

Now use the data \(w(4) = 4 \)

\[w(4) = Ce^{0.75 \cdot 4} \]

\[4 = C e^{3} \]

\[\frac{y}{e^3} = C \rightarrow w(t) = \frac{4}{e^3} e^{0.75t} = 4e^{0.75t - 3} \]
3. (4 points total) A ball is thrown straight up from an initial height of 5 feet above the ground. Until the ball hits the ground, the function \(h(t) = -10t^2 + 5t + 5 \) represents the ball's height in feet above ground level \(t \) seconds after it was thrown.

(a) (2 points) What is the velocity of the ball when it hits the ground?

The ball hits the ground when \(h(t) = 0 \), so solve

\[
-10t^2 + 5t + 5 = 0
\]

\(\Rightarrow \quad (-2t-1)(t-1) = 0 \quad \Rightarrow \quad t = 1 \) or \(t = -\frac{1}{2} \)

Since we are in the context of after the ball was thrown, \(t > 0 \).

Hence \(t = 1 \) not \(\frac{1}{2} \), so we want the velocity at time \(t = 1 \).

Velocity \(v = h'(t) = -20t + 5 \) \(\Rightarrow \quad h'(1) = -20 + 5 = -15 \) ft/s.

(b) (2 points) What is the maximum height of the ball?

Max height of ball is when \(h'(t) = 0 \),

\(0 = h''(t) = -20 \). \(\Rightarrow \quad t = \frac{1}{4} \). So we want the

height at time \(t = \frac{1}{4} \)

\[
h\left(\frac{1}{4}\right) = -10\left(\frac{1}{4}\right)^2 + \frac{5}{4} + 5 = \frac{-10}{16} + \frac{5}{4} + 5
\]

\[
= \frac{-10 + 20 + 80}{16} = \frac{90}{16} = \frac{45}{8}
\]