No calculators allowed.

Show sufficient work to justify each answer.

You have 15 minutes for this quiz.

1. The position function of a particle moving along a wire is given by \(s(t) = t^3 - 6t^2 \), where \(s \) is in meters and \(t \geq 0 \) is in seconds.

 (a) (2 pts) Find the acceleration of the particle 3 seconds after it begins moving.

 \[
 v(t) = s'(t) = 3t^2 - 12t
 \]

 \[
 a(t) = s''(t) = 6t - 12
 \]

 \[
 a(3) = 6(3) - 12 = 18 - 12 = 6 \text{ m/s}^2
 \]

 \[
 a(3) = 6 \text{ m/s}^2
 \]

 (b) (2 pts) What is the position of the particle when it reverses direction?

 When the particle reverses direction, its instantaneous velocity is 0.

 \[
 v(t) = 3t^2 - 12t = 0
 \]

 \[
 3t(t - 4) = 0
 \]

 \[
 t = 0 \text{ or } t = 4
 \]

 \[
 \uparrow
 \]

 This can be ignored, since we never have \(t < 0 \).

 When \(t = 4 \),

 \[
 s(4) = 4^3 - 6(4^2) = 64 - 6(16) = 64 - 96 = -32.
 \]

 The particle is at position \(-32 \text{ m}\) when it reverses direction.
2. (3 pts) Given that \(r = (3t^2 + 2)^{4t^3} \), find a formula for \(\frac{dr}{dt} \). Your formula must be written in terms of \(t \).

\[
\frac{dr}{dt} = \frac{d}{dt} \left((3t^2 + 2)^{4t^3} \right) \\
= 4t^3 \ln(3t^2 + 2) (3t^2 + 2)^{4t^3} \\
= 12t^2 \ln(3t^2 + 2) + 4t^3 \cdot \frac{1}{3t^2 + 2} \cdot 6t \\
= 12t^2 \ln(3t^2 + 2) + \frac{24t^4}{3t^2 + 2} \\
\frac{dr}{dt} = (3t^2 + 2)^{4t^3} \left(12t^2 \ln(3t^2 + 2) + \frac{24t^4}{3t^2 + 2} \right)
\]

3. (3 pts) The decay of a radioactive substance is described by the equation \(\frac{dA}{dt} = -0.04A \), where \(A \) is the amount of the substance and \(t \) is the time in weeks. If you start with 100g of this substance, how long will it take to decay to 25g?

\[
\frac{dA}{dt} = -0.04A, \text{ so } A(t) = Ce^{-0.04t} \\
A(0) = 100g, \text{ so } 100 = Ce^{-0.04(0)} = C \cdot e^0 = C \cdot 1 = C \\
\text{Thus } A(t) = 100e^{-0.04t}.
\]

We want to find \(t \) such that \(A(t) = 25g \).

\[
25 = 100e^{-0.04t} \\
e^{-0.04t} = \frac{25}{100} = \frac{1}{4} \\
\ln(e^{-0.04t}) = \ln\left(\frac{1}{4}\right) \\
-0.04t = \ln\left(\frac{1}{4}\right) \\
t = \frac{\ln\left(\frac{1}{4}\right)}{-0.04} \text{ weeks}
\]

Note: \(\ln\left(\frac{1}{4}\right) = \ln(4^{-1}) = -1 \ln 4 \), so \(t = \frac{\ln 4}{0.04} \text{ weeks} \)

and \(-\ln 4 = -\ln(2^2) = -2\ln 2 \), so \(t = \frac{2\ln 2}{0.04} = \frac{2\ln 2}{0.02} \text{ weeks} \)

are equivalent answers.
Name: KEY

- No calculators allowed.
- Show sufficient work to justify each answer.
- You have 15 minutes for this quiz.

1. The position function of a particle moving along a wire is given by \(s(t) = t^3 - 3t^2 \), where \(s \) is in meters and \(t \geq 0 \) is in seconds.

 (a) (2 pts) Find the acceleration of the particle 3 seconds after it begins moving.

 \[
 \begin{align*}
 v(t) &= s'(t) = 3t^2 - 6t \\
 a(t) &= s''(t) = 6t - 6 \\
 a(3) &= 6(3) - 6 = 18 - 6 = 12 \\
 \underline{a(3) = 12 \text{m/s}^2}
 \end{align*}
 \]

 (b) (2 pts) What is the position of the particle when it reverses direction?

 When the particle reverses direction, its instantaneous velocity is 0.

 \[
 v(t) = 3t^2 - 6t = 0 \\
 3t(t - 2) = 0 \\
 t = 0 \text{ or } t = 2
 \]

 \(t = 0 \) can be ignored, since we never have \(t < 0 \).

 When \(t = 2 \),

 \[
 s(2) = 2^3 - 3(2^2) = 8 - 12 = -4.
 \]

 The particle is at position \(-4 \text{m}\) when it reverses direction.
2. (3 pts) Given that \(r = (2t^4 + 4)^{3t^2} \), find a formula for \(\frac{dr}{dt} \). Your formula must be written in terms of \(t \).

\[
\frac{dr}{dt} = 6t \ln(2t^4 + 4) + \frac{1}{2t^3 + 4} \cdot 8t^3
\]

\[
\frac{dr}{dt} = (2t^4 + 4)^{3t^2} \left(6t \ln(2t^4 + 4) + \frac{24t^5}{2t^4 + 4} \right)
\]

3. (3 pts) The decay of a radioactive substance is described by the equation \(\frac{dA}{dt} = -0.07A \), where \(A \) is the amount of the substance and \(t \) is the time in weeks. If you start with 50g of this substance, how long will it take to decay to 25g?

\[
\frac{dA}{dt} = -0.07A, \quad \text{so} \quad A(t) = Ce^{-0.07t}
\]

\[A(0) = 50g, \quad \text{so} \quad 50 = Ce^{-0.07(0)} = C \cdot e^0 = C \cdot 1 = C.
\]

Thus \(A(t) = 50e^{-0.07t} \).

We want to find \(t \) such that \(A(t) = 25g \).

\[25 = 50e^{-0.07t}
\]

\[-0.07t = \ln(\frac{25}{50}) = \ln(\frac{1}{2})\]

\[-0.07t = \frac{\ln(\frac{1}{2})}{-0.07} \text{ weeks}\]

Note: \(\ln(\frac{1}{2}) = \ln(2^{-1}) = -1 \ln 2 \), so \(t = \frac{\ln 2}{0.07} \text{ weeks} \) is an equivalent answer.