SOLUTIONS TO QUIZ 2

1. a. Adding 1/4 to both sides we get

\[y + \frac{1}{4} = x^2 - x + \frac{1}{4} = (x - \frac{1}{2})^2. \]

Since \(x \geq \frac{1}{2} \) we take square roots of both sides and have

\[(y + \frac{1}{4})^{1/2} = x - \frac{1}{2} \]

(if we had \(x \leq \frac{1}{2} \) the right hand side would be \(-x + \frac{1}{2}\)). Then

\[x = (y + 1/4)^{1/2} + 1/2. \]

Thus the inverse function is

\[y = (x + 1/4)^{1/2} + 1/2. \]

b. Multiplying both sides by \(1 + 2e^x \) we get

\[y + 2ye^x = e^x. \]

Then we put \(e^x \) terms on one side

\[y = e^x(-2y + 1). \]

Dividing both sides by \(-2y + 1\)

\[e^x = \frac{y}{-2y + 1} \]

. Now we take logarithms of both sides

\[x = \ln \frac{y}{-2y + 1} \]

So the inverse function is

\[y = \ln \frac{x}{-2x + 1}. \]

2. a. Taking exponentials of both sides

\[e^{\ln(x)} = e \]

\[1 \]
which gives
\[\ln x = e. \]
Taking exponentials once more
\[e^{\ln x} = e^e \]
from which
\[x = e^e. \]

b. If \(C \leq 0 \) there can be no solution as left hand side is strictly positive. If \(C > 0 \) we proceed as follows: taking logarithms of both sides
\[\ln(e^{ax}) = \ln(Ce^{bx}). \]
Then we have
\[ax = \ln C + \ln e^{bx} = \ln C + bx. \]
Thus
\[x(a - b) = \ln C \]
and
\[x = \frac{\ln C}{a - b}. \]