1. (3 points) Let R be the region bounded by the x-axis and the graph of $y = \ln x$ on the interval $[2, 3]$. Set up, but do not evaluate, the definite integral which represents the volume of the solid obtained when R is revolved around the line $x = 1$. Use proper notation.

$V = \int_0^2 \pi(2^2 - y^2) \, dy + \int_2^3 \pi(3^2 - (e^y)^2) \, dy$

2. (3 points) Set up, but do not evaluate, the definite integral which represents the volume of the solid obtained by rotating the region bounded by the curves $y = 4 - x^2$ and the x-axis about the x-axis.

$V = \int_{-2}^2 A(x) \, dx = \int_{-2}^2 \pi(4 - x^2)^2 \, dx$
3. (2 points) Precisely state Rolle's Theorem.

If \(f \) is a function satisfying
(1) \(f \) is continuous on the closed interval \([a,b]\)
(2) \(f \) is differentiable on the open interval \((a,b)\)
(3) \(f(a) = f(b) \)

where \(a \neq b \), then there is a number \(c \) with \(a < c < b \)
\[f'(c) = 0. \]

4. (2 points) Explain carefully why \(f(x) = x^5 + 5x^3 + 3x - 10 \) cannot have two real roots.

Say \(f \) does have two real roots, \(a, b \), so \(f(a) = f(b) = 0 \).
Without any loss of generality, we can assume \(a < b \).
Now \(f \) is a polynomial, hence it is cont \& diff everywhere. So in particular, it is cont \& diff on \([a,b]\) and \((a,b)\) respectively. Then by Rolle's Theorem, there must be a \(c \) with \(a < c < b \) s.t. \(f'(c) = 0 \).

Now let's evaluate \(f''(x) \): \(f'(x) = 5x^4 + 15x^2 + 3 \).
\(5x^4 \geq 0 \) and \(15x^2 \geq 0 \) for every \(x \). Hence \(f''(x) = 20x^2 + 3 \geq 3 \geq 0 \). In particular for any \(c \) with \(a < c < b \), \(f''(c) > 0 \).
This contradicts our conclusion from Rolle's Theorem.
Therefore our initial assumption must be false. So \(f \) does not have two real roots.