1. (2 pts) Fill in the missing information for the following theorems.

Name of Theorem:

Let f be a function that satisfies the following hypotheses:

(1) f is continuous on the closed interval $[a, b]$.
(2) f is differentiable on the open interval (a, b).
(3)

Then there is a number c in (a, b) such that $f'(c) = 0$.

Name of Theorem:

Let f be a function that satisfies the following hypotheses:

(1) f is continuous on the closed interval $[a, b]$.
(2) f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

2. (2 points) Let R be the finite region bounded by $y = 4 - x^2$ and the x-axis. Set up, but do not evaluate, a definite integral which represents the volume of the solid with base R for which the cross-sections perpendicular to the x-axis are semi-circles.
3. (4 pts) Let \(R \) be the finite region bounded by \(y = 2 \ln x \), \(x = 3 \) and the \(x \)-axis. In the following manner set up, but do not evaluate, definite integrals which represent the volume of the solid obtained when \(R \) is revolved around the line \(y = -1 \).

(a) Integrate with respect to \(x \).

(b) Integrate with respect to \(y \). (Note: The integrands in parts (a) and (b) should be different.)

4. (2 pts) The number \(c \) guaranteed by the Mean Value Theorem for the function \(f(x) = \frac{1}{x} \) on \([a, b] \) is the geometric mean of \(a \) and \(b \). Find the geometric mean of 2 and 5.
1. (2 pts) Fill in the missing information for the following theorems.

Name of Theorem: ________________________________
Let \(f \) be a function that satisfies the following hypotheses:

(1) \(f \) is continuous on the closed interval \([a, b]\).
(2) \(f \) is differentiable on the open interval \((a, b)\).

Then there is a number \(c \) in \((a, b)\) such that ________________________________ .

Name of Theorem: ________________________________
Let \(f \) be a function that satisfies the following hypotheses:

(1) \(f \) is continuous on the closed interval \([a, b]\).
(2) \(f \) is differentiable on the open interval \((a, b)\).
(3) ________________________________ .

Then there is a number \(c \) in \((a, b)\) such that \(f'(c) = 0 \).

2. (2 points) Let \(R \) be the finite region bounded by \(y = 9 - x^2 \) and the \(x \)-axis. Set up, but do not evaluate, a definite integral which represents the volume of the solid with base \(R \) for which the cross-sections perpendicular to the \(x \)-axis are squares.
3. (4 pts) Let \(R \) be the finite region bounded by \(y = \frac{1}{3} \ln x, \ x = 4 \) and the \(x \)-axis. In the following manner set up, but do not evaluate, definite integrals which represent the volume of the solid obtained when \(R \) is revolved around the line \(y = 5 \).

(a) Integrate with respect to \(y \).

(b) Integrate with respect to \(x \). (Note: The integrands in parts (a) and (b) should be different.)

4. (2 pts) The number \(c \) guaranteed by the Mean Value Theorem for the function \(f(x) = \frac{1}{x} \) on \([a, b]\) is the geometric mean of \(a \) and \(b \). Find the geometric mean of 3 and 7.