Name:

- No calculators allowed.
- Show sufficient work to justify each answer.
- You have 15 minutes for this quiz.

1. (2 points) Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Find all numbers \(c \) that satisfy the conclusion.

\[f(x) = x^3 - 3x + 2 \text{ on } [-2, 2] \]

\(\text{(i) } f(x) \text{ is continuous everywhere, so } f(x) \text{ is continuous on } [-2, 2] \)

\(\text{(ii) } f(x) \text{ is differentiable everywhere so } f'(x) \text{ is differentiable on } [-2, 2] \)

We have satisfied both hypotheses, so the MVT tells us there exists a \(c \) in \((-2, 2)\) such that

\[f'(c) = \frac{f(2) - f(-2)}{2 - (-2)} \]

\[f'(c) = \frac{4 - 0}{4} = 1 \]

\[f''(c) = 3x^2 - 3 \]

\[1 = 3c^2 - 3 \]
\[3c^2 = 4 \]
\[c^2 = 4/3 \]
\[c = \pm \frac{2}{\sqrt{3}} \]

Both are in \([-2, 2]\), therefore when \(c = \frac{2}{\sqrt{3}} \)

the conclusion as MVT is satisfied.
2. Consider the region bounded by the curves, \(y = x \) and \(y = \frac{x^2}{2} \). Intersect at \(x = 0 \) and \(x = 2 \).

(a) (2 points) Set up but **do not solve** the integral for the volume of the solid obtained by rotating the region about the \(x \)-axis and integrating with respect to \(x \).

Rotating around \(x \)-axis \(\Rightarrow \) Cross sections perpendicular to \(x \) \(\Rightarrow \) Integrate w.r.t \(x \)

\[
\text{larger radius} = x \quad \text{smaller radius} = \frac{x^2}{2}
\]

\[
\int_0^2 \pi (x)^2 - \pi \left(\frac{x^2}{2} \right)^2 \, dx = \pi \int_0^2 x^2 - \frac{x^4}{4} \, dx
\]

(b) (2 points) Set up but **do not solve** the integral for the volume of the solid obtained by rotating the region about the \(x \)-axis and integrating with respect to \(y \).

Shells \(\Rightarrow \) w.r.t \(y \)

\[
\text{radius} = y \quad \text{height} = \sqrt{2y} - y
\]

\[
\int_0^2 2\pi (y)(\sqrt{2y} - y) \, dy = 2\pi \int_0^2 y(\sqrt{2y} - y) \, dy
\]

(c) (2 points) Set up but **do not solve** the integral for the volume of the solid obtained by rotating the region about the \(y \)-axis (you may integrate with respect to \(x \) or \(y \)).

Cross sections \(\Rightarrow \) w.r.t \(y \)

\[
\text{larger radius} = \sqrt{2y} \quad \text{smaller radius} = y
\]

\[
\int_0^2 \pi (\sqrt{2y})^2 - \pi (y)^2 \, dy = \pi \int_0^2 2y - y^2 \, dy
\]

(d) (2 points) Set up but **do not solve** the integral for the volume of the solid obtained by rotating the region about the line \(x = 3 \) (you may integrate with respect to \(x \) or \(y \)).

Cross sections \(\Rightarrow \) w.r.t \(y \)

\[
\text{larger radius} = 3 - y \quad \text{smaller radius} = 3 - \sqrt{2y}
\]

\[
\int_0^2 \pi (3-y)^2 - \pi (3-\sqrt{2y})^2 \, dy = \pi \int_0^2 (3-y)^2 - (3-\sqrt{2y})^2 \, dy
\]

Shells \(\Rightarrow \) w.r.t \(x \)

\[
\text{radius} = x \quad \text{height} = x - \frac{x^2}{2}
\]

\[
\int_0^2 2\pi (x)(x - \frac{x^2}{2}) \, dx = 2\pi \int_0^2 x^2 - \frac{x^3}{2} \, dx
\]