You have 15 minutes for this quiz – no calculators allowed.

1. (2 points) Explain carefully why \(f(x) = 3x^5 + x^3 + x - 15 \) cannot have two real roots.

 Proof: Suppose \(f(x) = 3x^5 + x^3 + x - 15 \) has two roots \(a \) and \(b \).

 Then \(f(a) = 0, f(b) = 0 \).

 \(f \) polynomial \(\Rightarrow f \) continuous on \([a,b]\)

 and \(f \) differentiable on \((a,b)\)

 Then by **Rolle's Theorem**, \(\exists c \) in \((a,b)\) such that \(f'(c) = 0 \).

 \[f'(x) = 15x^4 + x^2 + 1 \]

 \[f'(c) = 15c^4 + c^2 + 1 \geq 1 \]

 Hence \(f'(c) \neq 0 \).

 Hence \(f \) cannot have two real roots.

2. (2 points) Set up, but do not evaluate, the integral expressing the volume of a solid \(S \)

 where the base of \(S \) is the region enclosed by \(y = 4 - x^2 \) and the \(x \)-axis. Cross sections

 perpendicular to the \(x \)-axis are squares.

 \[
 \text{Volume} = \int_{-2}^{2} (4-x^2)^2 \, dx
 \]
3. (3 points each) Let \(R \) be the region bounded by \(y = 2 \) and the graph of \(y = 2 + \cos x \) on the interval \([\frac{\pi}{2}, \frac{3\pi}{2}]\). Set up, but do not evaluate, definite integrals which represent the given quantities. Use proper notation.

(a) The volume of the solid obtained when \(R \) is revolved around the \(y \)-axis.

\[
\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} 2\pi \left(2 - (2 + \cos x)\right) \, dx.
\]

(b) The volume of the solid obtained when \(R \) is revolved around the line \(y = 4 \).

Outer radius = \(4 - (2 + \cos x) \)

Inner radius = 2

\[
\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \pi \left[\left(4 - (2 + \cos x)^2\right) - 2^2\right] \, dx.
\]