1. (3 points) Evaluate
\[\int \csc^2(4 \sin(4\theta)) \cos(4\theta) \, d\theta \]
Let \(u = 4 \sin(4\theta) \). Then \(du = 16 \cos(4\theta)d\theta \), so \(du/16 = \cos(4\theta)d\theta \). Therefore,
\[\int \csc^2(4 \sin(4\theta)) \cos(4\theta) \, d\theta = \int \csc^2(u)/16 du = -\cot(u)/16 + C = -\cot(4 \sin(4\theta))/16 + C \]

2. (3 points) Evaluate
\[\int_1^2 \frac{e^{-6/x}}{x^2} \, dx \]
Let \(u = -6/x \), \(du = 6/x^2 dx \), \(du/6 = 1/x^2 dx \), \(u(1) = -6 \), and \(u(2) = -3 \). Then
\[\int_{-6}^{-3} e^u du/6 = e^u \bigg|_{-3}^{-6} = \frac{e^{-3}}{6} - \frac{e^{-6}}{6} \]

3. Consider the region \(R \) bounded by \(y = 1 \), \(y = 2 \), and \(y = x^2 \). Set up, but do not evaluate, definite integrals which represent the area of \(R \), in each of the following manners. Use proper notation. Your answers to (a) and (b) should have different integrands.

(a) (2 points) Integrate with respect to \(x \).
A picture might help:

The intersection points occur at when \(x^2 = 1 \) (so \(x = \pm 1 \)) and \(x^2 = 2 \) (so \(x = \pm \sqrt{2} \)).
From \(x = -\sqrt{2} \) to \(x = -1 \), the top curve is \(y = 2 \) and the bottom curve is \(y = x^2 \).
From \(x = -1 \) to \(x = 1 \), the top curve is \(y = 2 \) and the bottom curve is \(y = 1 \). From \(x = 1 \) to \(x = \sqrt{2} \), the top curve is \(y = 2 \) and the bottom curve is \(y = x^2 \). Thus, we have
\[\int_{-\sqrt{2}}^{-1} (2 - x^2) \, dx + \int_{-1}^{1} (2 - 1) \, dx + \int_{1}^{\sqrt{2}} (2 - x^2) \, dx \]
Alternatively, if you notice that the region is symmetric about the \(y \)-axis, you could just find the area from 0 to \(\sqrt{2} \) and double it: \(2 \int_{0}^{1} (2 - 1) \, dx + 2 \int_{1}^{\sqrt{2}} (2 - x^2) \, dx \).

(b) (2 points) Integrate with respect to \(y \).
We need to reframe everything in terms of \(y \). So \(y = x^2 \) becomes \(x = \pm \sqrt{y} \) (\(x = \sqrt{y} \) is the curve in the first quadrant above and \(x = -\sqrt{y} \) is the curve in the second quadrant). The right curve is \(x = \sqrt{y} \) while the left curve is \(x = -\sqrt{y} \), so we get
\[\int_{1}^{2} (\sqrt{y} - (-\sqrt{y}) \, dy = \int_{1}^{2} 2 \sqrt{y} \, dy \]
Alternatively, note that the picture is symmetric about the \(y \)-axis, so we could find \(\int_{1}^{2} \sqrt{y} \, dy \) and double it.