MATH 220 Test 2 Spring 2012

Name ___________________________ UIN ___________________________

(circle your TA discussion section)

- AD1, TR 11:00-11:50, Amita Malik
- AD2, TR 1:00-1:50, Amita Malik
- AD3, TR 1:00-1:50, Neha Gupta
- AD4, TR 1:00-1:50, Meghan Galiardi
- AD5, TR 2:00-2:50, Neha Gupta
- AD7, TR 3:00-3:50, Meghan Galiardi
- AD8, TR 1:00-2:50, Hannah Kolb-Spinoza
- AD9, TR 9:00-10:50, Vicki Reuter
- BD1, TR 2:00-2:50, Stephen Longfield
- BD2, TR 8:00-8:50, Eliana Duarte
- BD3, TR 11:00-11:50, Michael Santana
- BD4, TR 9:00-9:50, Eliana Duarte
- BD5, TR 2:00-2:50, Stephen Berning
- BD6, TR 1:00-1:50, Faruk Temur
- BD7, TR 3:00-3:50, Stephen Berning
- BD8, TR 3:00-3:50, Stephen Longfield

- Sit in your assigned seat (circled below).
- Circle your TA discussion section.
- Do not open this test booklet until I say START.
- Turn off all electronic devices and put away all items except a pen/pencil and an eraser.
- Remove hats and sunglasses.
- You must show sufficient work to justify each answer.
- While the test is in progress, we will not answer questions concerning the test material.
- Do not leave early unless you are at the end of a row.
- Quit working and close this test booklet when I say STOP.
- Quickly turn in your test to me or a TA and show your Student ID.

263 264 265 266 267 268 269 270 271 272 273 278 279 280 281 282 283 284 285 286 287
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
 1 2 3 4 5 6 7 8 17 18 19 20 21 22 23

FRONT OF ROOM – 314 Altgeld Hall
1. (2 points each) Circle **true** if the given statement is always true. Otherwise circle **false**.

(a) Given a polynomial \(f(x) \), if \(f'(x) \) is increasing on an open interval then \(f \) is concave up on that interval.

true or false?

\[f' \text{ is increasing } \Rightarrow \text{ its derivative } \quad f'' > 0 \]
\[\Rightarrow f \text{ is concave up} \]

(b) If \(f''(a) = 0 \) then there is an inflection point at \(x = a \).

true or false?

\[f \text{ must be continuous and switch concavity at } x = a \text{ in order to have an inflection point there.} \]

\[\text{Note: If } f(x) = x^4 \text{ then } f''(x) = 12x^2 \text{ equals 0 at } x = 0 \text{ yet } f \text{ has no inflection point.} \]

(c) \(\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \)

true or false?

This is only guaranteed to be true under the condition of l'Hopital's Rule (see section 4.4). It is not true in general.

(d) The solution to the differential equation \(\frac{dq}{dr} = 2q \) is an exponential function.

true or false?

\[\frac{dq}{dr} = 2q \text{ has solution } q = Ce^{2r} \]
2. (8 points) Find \(h'(x) \) given that \(h(x) = 5x^4 - \sqrt[3]{x} + \sec x + \ln x \)

\[
h'(x) = 20x^3 - \frac{1}{3}x^{-2/3} + \sec x \cdot \tan x + \frac{1}{x}
\]

3. (8 points) Find \(\frac{dw}{dt} \) given that \(w = 10t^5 \sin^{-1} t \)

\[
\frac{dw}{dt} = (10t^5)'(\sin^{-1} t) + (10t^5)(\sin^{-1} t)' \\
= 50t^4 \sin^{-1} t + 10t^5 \cdot \frac{1}{\sqrt{1-t^2}}
\]

4. (8 points) Find \(f'(x) \) given that \(f(x) = \frac{x^3}{x^5 + 4x + 2} \)

\[
f'(x) = \frac{(x^3)'(x^5 + 4x + 2) - (x^3)(x^5 + 4x + 2)'}{(x^5 + 4x + 2)^2} \\
= \frac{3x^2(x^5 + 4x + 2) - x^3(5x^4 + 4)}{(x^5 + 4x + 2)^2}
\]
5. (8 points) Find $g'(t)$ given that $g(t) = \cos (\tan (t^8))$

$$g'(t) = -\sin (\tan (t^8)) \cdot (\tan (t^8))'$$
$$= -\sin (\tan (t^8)) \cdot \sec^2 (t^8) \cdot (t^8)'$$
$$= -\sin (\tan (t^8)) \cdot \sec^2 (t^8) \cdot 8t^7$$

6. (12 points) A man is standing on a bridge over a river. He reaches over the railing and throws a stone vertically upward. Until it lands in the river, the stone’s height in feet above the river is $h = -16t^2 + 24t + 40$ where t is measured in seconds since the stone was thrown. What is the velocity of the stone as it strikes the river? Simplify your answer.

Note that $h = 0$ when the stone strikes the river,

$$0 = -16t^2 + 24t + 40$$
$$0 = -8(2t^2 - 3t - 5)$$
$$0 = -8(t+1)(2t-5)$$
$$t = -1 \text{ or } t = \frac{5}{2}$$

not applicable

velocity is $h' = -32t + 24$

$$h'\left(\frac{5}{2}\right) = -32\left(\frac{5}{2}\right) + 24$$
$$= -80 + 24$$
$$= -56 \text{ ft/s}$$
7. (9 points) What is the slope of the line tangent to the graph of \(f(x) = \frac{\sin(2x) \cos x}{1 - \sin^2 x} \) at \(x = \pi/3 \)? Simplify your answer.

Since \(\sin(2x) = 2\sin x \cos x \) and \(1 - \sin^2 x = \cos^2 x \), we simplify to get:

\[
f(x) = \frac{\sin(2x) \cos x}{1 - \sin^2 x} = \frac{2\sin x \cos x \cos x}{\cos^2 x} = 2\sin x
\]

Thus \(f'(x) = 2\cos x \)

and the slope at \(x = \pi/3 \) is:

\[
f'(\pi/3) = 2\cos(\pi/3) = 2 \cdot \frac{1}{2} = 1
\]

8. (9 points) Find \(\frac{dy}{dx} \) given that \(x^3 y^2 + x^5 = \sin(y^3) \). It is okay to leave your answer in terms of both \(x \) and \(y \).

\[
\frac{d}{dx} (x^3 y^2 + x^5) = \frac{d}{dx} (\sin(y^3))
\]

\[
3x^2 y^2 + x^3 2y \frac{dy}{dx} + 5x^4 = \cos(y^3) \cdot 3y^2 \frac{dy}{dx}
\]

\[
2x^3 y \frac{dy}{dx} - 3y^2 \cos(y^3) \frac{dy}{dx} = -5x^4 - 3x^2 y^2
\]

\[
\left(2x^3 y - 3y^2 \cos(y^3) \right) \frac{dy}{dx} = -5x^4 - 3x^2 y^2
\]

\[
\frac{dy}{dx} = \frac{-5x^4 - 3x^2 y^2}{2x^3 y - 3y^2 \cos(y^3)}
\]
9. (8 points) Evaluate the following limit.
\[
\lim_{{x \to 0}} \frac{e^{3x} - 3x - 1}{5x^2} = \lim_{{x \to 0}} \frac{3e^{3x} - 3}{10x} = \lim_{{x \to 0}} \frac{9e^{3x}}{10} = \frac{9}{10}
\]

Each circle refers to an application of L'Hopital's rule.

10. (12 points) For the given function, determine the intervals upon which it is increasing/decreasing, as well as the x-coordinate for each local maxima/minima.

\[
f(x) = \frac{x - 1}{x^2 + 24}
\]

\[
f'(x) = \frac{(x-1)'(x^2+24) - (x-1)(x^2+24)'}{(x^2+24)^2}
\]

\[
= \frac{-x^2 + 2x + 24}{(x^2+24)^2}
\]

\[
= -(x-6)(x+4)
\]

\[
\begin{array}{c|c|c}
\text{f decr. on } (-\infty, -4] & \text{f incr. on } [-4, 6] & \text{f decr. on } [6, \infty) \\
\text{by first deriv. test, } & & \\
F \text{ has a local min } & & \\
\text{at } x = -4 & & \text{and a local max} \\
\text{and a local max } & & \text{at } x = 6 \\
\end{array}
\]
11. (10 points) For each \(x > 0 \), a triangle is formed with vertices \((0, 0)\), \((x, 3e^{-2x})\) and \((x, -5e^{-2x})\). What is the value of \(x \) which results in the triangle of largest area?

\[
\begin{align*}
A &= \frac{1}{2}(x)(8e^{-2x}) \\
A &= 4xe^{-2x} \\
A' &= (4x)'(e^{-2x}) + (4x)(e^{-2x})' \\
A' &= 4e^{-2x} - 8xe^{-2x} \\
A' &= 4e^{-2x}(1 - 2x) \\
A' &= 0 \text{ at } x = \frac{1}{2}
\end{align*}
\]

Values of \(A' \):

\[\xrightarrow{++} \frac{1}{2} \xrightarrow{--} x \]

Max area occurs at \(x = \frac{1}{2} \) where area is

\[
4\left(\frac{1}{2}\right)e^{-2\left(\frac{1}{2}\right)} = \frac{2}{e}
\]
Students – do not write on this page!

1. (8 points) ______________________

2. (8 points) ______________________

3. (8 points) ______________________

4. (8 points) ______________________

5. (8 points) ______________________

6. (12 points) ____________________

7. (9 points) ______________________

8. (9 points) ______________________

9. (8 points) ______________________

10. (12 points) ____________________

11. (10 points) ____________________

TOTAL (100 points) ____________