MATH 220 Test 3 Fall 2019

Name ____________________________ NetID ____________________________ UIN ____________________________

Circle your TA discussion section.

> AD1, TR 11:00-12:50, Mina Nahvi > ADJ, TR 9:00-9:50, Robert "Bob" Krueger
> AD2, TR 9:00-10:50, Adriana Morales > ADK, TR 10:00-10:50, Sarah Simpson
> AD3, TR 1:00-2:50, Vincent Villalobos > ADL, TR 11:00-11:50, Rocco Davino
> AD@, TR 9:00-9:50, Phuong "Sophie" Le > ADM, TR 12:00-12:50, Dara Zirlin
> ADA, TR 8:00-8:50, Scott Harman > ADN, TR 1:00-1:50, John "Connor" Grady
> AD2, TR 9:00-10:50, Lutian Zhao > ADQ, TR 10:00-10:50, Saaber Pourmotabbed
> AD3, TR 2:00-2:50, Shuyu "Sonya" Xiao > ADL, TR 11:00-11:50, Adriana Morales
> ADJ, TR 9:00-9:50, Robert "Bob" Krueger > ADM, TR 12:00-12:50, Dara Zirlin
> ADK, TR 1:00-1:50, John "Connor" Grady > ADN, TR 1:00-1:50, Scott Harman

• Sit in your assigned seat (circled below).
• Do not open this test booklet until I say START.
• Turn off all electronic devices and put away all items except a pen/pencil and an eraser.
• Remove hats and sunglasses.
• There is no partial credit on multiple-choice questions. For all other questions, you must show sufficient work to justify your answer.
• While the test is in progress, we will not answer questions concerning the test material.
• Do not leave early unless you are at the end of a row.
• Quit working and close this test booklet when I say STOP.
• Quickly turn in your test to me or a TA and show your Student ID.
1. (10 points) Evaluate the indefinite integral.

\[\int \left(x^6 + 9 \cos(x) + 5 \sin(x) + 3 \csc(x) \cot(x) + 8 \sec(x) \tan(x) + 9 \sec^2(x) + 4 \csc^2(x) + 2 \right) \, dx \]

2. (10 points) Evaluate the indefinite integral.

\[\int \frac{240x^5}{x^{12} + 25} \, dx \]
3. (10 points) Evaluate the indefinite integral.

\[\int 81x (9x + 4)^{40} \, dx \]

4. (10 points) Evaluate the indefinite integral.

version 1: \[\int \tan^6(x) \sec^4(x) \, dx \]

version 2: \[\int \sec^5(x) \tan^3(x) \, dx \]
5. (10 points) Find the average value of the function \(f(x) = \frac{32x}{\sqrt{2x^2 + 49}} \) on the interval \([0, 4]\). Simplify your answer.

6. (10 points) Suppose that \(f(x) \) is a polynomial which satisfies the following conditions.

- \(\int_{2}^{9} f(x) \, dx = 30 \)
- \(\int_{4}^{9} f(x) \, dx = 34 \)

Evaluate the following quantities.

(a) \(\int_{2}^{4} (8f(x) + 5) \, dx \)

(b) \(\int_{3}^{4} 34xf(x^2 - 7) \, dx \)
7. (10 points) Given the function below, use a linear approximation to estimate \(f(5.02) \). Simplify and write your answer in decimal form.

\[
f(x) = \frac{1}{15} \ln (x^3 - 124) + 6x + 12
\]

8. (10 points) Evaluate the following limit. Be sure to use proper notation throughout your evaluation of this limit. Simplify your answer.

\[
\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{60k}{n^2} + \frac{12}{n + 5} \right)
\]
9. (10 points) Let \(g(x) = 8x + \int_x^9 e^{t-25} \, dt \). Determine the \(x \)-value for each inflection point of \(g(x) \).
10. (10 points) The graphs of \(v(x) = 3e^x \) and \(w(x) = 12e^{-x} \) intersect at the point \((x, y) = (\ln(2), 6)\). Let \(R \) be the finite region bounded by \(v(x), w(x) \) and the \(y \)-axis. By integrating with respect to \(x \), set up, but do not evaluate, definite integrals which represent the given quantities.

(a) The volume of the solid obtained when \(R \) is revolved around the vertical line \(x = -4 \).

(b) The volume of the solid obtained when \(R \) is revolved around the horizontal line \(y = 15 \).
Students – do not write on this page!

1. (10 points) ______________________

2. (10 points) ______________________

3. (10 points) ______________________

4. (10 points) ______________________

5. (10 points) ______________________

6. (10 points) ______________________

7. (10 points) ______________________

8. (10 points) ______________________

9. (10 points) ______________________

10. (10 points) _____________________

TOTAL (100 points) ________________