1. (3 points) Find the average value of the function \(f(x) = \frac{12}{4x^2 + 1} \) on the interval \([0, 1/2]\). Simplify your answer.

\[
\frac{f_{\text{ave}}}{2} = \frac{1}{\frac{1}{2} - 0} \int_{0}^{\frac{1}{2}} \frac{12}{4x^2 + 1} \, dx \\
= 2 \int_{0}^{\frac{1}{2}} \frac{12}{(2x)^2 + 1} \, dx \\
= 2 \int_{0}^{1} \frac{6}{u^2 + 1} \, du \\
= 12 \int_{0}^{1} \frac{1}{u^2 + 1} \, du \\
= 12 \left[\arctan(u) \right]_{0}^{1} \\
= 12 \left[\arctan(1) - \arctan(0) \right] \\
= 12 \left[\frac{\pi}{4} - 0 \right] \\
= \sqrt{3} \pi
\]
2. Let \(R \) be the finite region bounded by the graphs determined by the following equations.

\[
\begin{align*}
y &= 5 \ln(x) \\
x &= e^2 \\
y &= 15
\end{align*}
\]

\[
\text{intersections} \\
5 \ln(x) = 15 \implies \ln(x) = 3 \implies x = e^3 \\
\text{at } x = e^2, \ y = 5 \ln(e^2) = 5 \cdot 2 = 10
\]

Set up, but do not evaluate, definite integrals which represent the volumes of the following solids.

(a) (3 points) The volume of the solid with base \(R \) for which the cross-sections perpendicular to the \(x \)-axis are semicircles.

\[
V = \int_{e^2}^{e^3} \left(\text{cross-sections area} \right) dx
\]

\[
V = \int_{e^2}^{e^3} \frac{1}{2} \pi r^2 \; dx
\]

\[
V = \int_{e^2}^{e^3} \frac{1}{2} \pi \left(\frac{\text{diameter}}{2} \right)^2 \; dx
\]

\[
V = \int_{e^2}^{e^3} \frac{1}{2} \pi \left(\frac{15 - 5 \ln(x)}{2} \right)^2 \; dx
\]
(b) The volume of the solid formed when \(R \) is revolved around the line \(y = 18 \). Set up the integrals for this volume in the following two ways.

i. (2 points) Integrate with respect to \(x \).

\[
V = \int \frac{e^3}{e^2} \left(\text{cross-sectional area} \right) \, dx
\]

\[
V = \int \frac{e^3}{e^2} \left(\pi r_{\text{out}}^2 - \pi r_{\text{in}}^2 \right) \, dx
\]

\[
V = \int \frac{e^3}{e^2} \left(\pi \left(18 - \ln(x) \right)^2 - \pi \left(18 - 15 \right)^2 \right) \, dx
\]

ii. (2 points) Integrate with respect to \(y \). (Use different integrands in parts i and ii.)

\[
V = \int_{10}^{15} \left(\text{surface area} \right) \, dy
\]

\[
V = \int_{10}^{15} 2\pi r h \, dy
\]

\[
V = \int_{10}^{15} 2\pi (18-y)(e^{y/15} - e^2) \, dy
\]

\[y = 5 \ln(x) \Rightarrow \ln(x) = \frac{18}{5} \\Rightarrow x = e^{18/5}\]