1. (2 points) Is the following function even, odd or neither?

\[g(x) = (3x^2 + \cos^5 x)^7 \]

\[g(-x) = (3(-x)^2 + \cos^5 (-x))^7 \]

\[= (3x^2 + \cos^5 (x))^7 \quad \text{since cosine is even} \]

\[= g(x) \]

\[g \text{ is even} \]

2. (2 points) What is the domain of the function \(f(x) = \sqrt{5 - \sqrt{2x-1}} \)?

\[2x-1 \geq 0 \quad \text{and} \quad 5 - \sqrt{2x-1} \geq 0 \]

\[2x \geq 1 \]

\[x \geq 1/2 \]

\[x \geq 1/2 \text{ and } x \leq 13 \]

\[[1/2, 13] \]
3. (2 points each) Evaluate the following quantities.

(a) \[\cot(-2\pi/3) = \frac{\cos(-2\pi/3)}{\sin(-2\pi/3)} = \frac{-1/2}{-\sqrt{3}/2} = \frac{1}{\sqrt{3}} \text{ or } \frac{\sqrt{3}}{3} \]

(b) \[\tan^2(\pi/7) - \sec^2(\pi/7) = \tan^2\left(\frac{\pi}{7}\right) - (\tan^2\left(\frac{\pi}{7}\right) + 1) = -1 \]

we used the identity \[\tan^2\theta + 1 = \sec^2\theta \]

4. (2 points) Given an acute angle \(\theta \) for which \(\sin \theta = 4/5 \), evaluate \(\sin(\theta - \pi/2) \).

Geometrically, we see \[\sin(\theta - \pi/2) = -\cos \theta \]

Or use identity \[\sin(x-y) = \sin x \cos y - \cos x \sin y \]

From \(\sin^2 \theta + \cos^2 \theta = 1 \) we get

\[\left(\frac{4}{5}\right)^2 + \cos^2 \theta = 1 \Rightarrow \cos \theta = \pm \frac{3}{5} \]

\(\theta \) is acute \(\Rightarrow \cos \theta = \frac{3}{5} \)

Now \(\sin(\theta - \pi/2) = -\cos \theta = -\frac{3}{5} \)