Name: SOLUTIONS

You have 15 minutes for this quiz – no calculators allowed.

1. (2 points) Precisely state Rolle's Theorem.
 Let \(f \) be a function that satisfies the following three hypotheses:
 \(f \) is continuous on the closed interval \([a, b]\).
 \(f \) is differentiable on the open interval \((a, b)\).
 \(f(a) = f(b) \)
 Then there is a number \(c \) in \((a, b)\) such that \(f'(c) = 0 \).

2. (2 points) Let \(f(x) = 3x^2 + 2x + 5 \). Determine the value of \(c \) which satisfies the conclusion of the Mean Value Theorem on the interval \([a, b]\) with \(a < b \). You must show all work and simplify your answer.
 Polynomials are continuous and differentiable everywhere so \(f \) is continuous on \([a, b]\) and differentiable on \((a, b)\). The Mean Value Theorem implies there is a \(c \) in \((a, b)\) such that \(f'(c) = \frac{f(b) - f(a)}{b - a} \)
 Since \(f'(x) = 6x + 2 \) we obtain
 \[6c + 2 = \frac{(3b^2 + 2b + 5) - (3a^2 + 2a + 5)}{b - a} \]
 \[6c + 2 = \frac{3(b^2 - a^2) + 2(b - a)}{b - a} \]
 \[6c + 2 = \frac{3(b - a)(b + a) + 2(b - a)}{b - a} \]
 \[6c + 2 = (b - a)(3b + a + 2) / (b - a) \]
 \[6c + 2 = 3(b + a) + 2 \]
 \[6c = 3(b + a) \quad \rightarrow \quad c = \frac{b + a}{2} \]
3. (2 points each) Let \(R \) be the region bounded by the \(x \)-axis and the graph of \(y = 3 + 2 \sin x \) on the interval \([0, 2\pi]\). Set up, but do not evaluate, definite integrals which represent the given quantities. Use proper notation.

(a) The volume of the solid obtained when \(R \) is revolved around the \(x \)-axis.

\[
V = \int_0^{2\pi} \pi \left(3 + 2 \sin x \right)^2 \, dx
\]

(b) The volume of the solid obtained when \(R \) is revolved around the line \(y = 7 \).

\[
V = \int_0^{2\pi} \pi \left(7^2 - \pi \left(7 - (3 + 2 \sin x) \right)^2 \right) \, dx
\]

(c) The volume of the solid with base \(R \) for which the cross-sections perpendicular to the \(x \)-axis are semi-circles.

\[
V = \int_0^{2\pi} \frac{1}{2} \pi \left(\text{radius} \right)^2 \, dx
\]

\[
= \int_0^{2\pi} \frac{1}{2} \pi \left(\frac{1}{2} \left(3 + 2 \sin x \right) \right)^2 \, dx
\]