Name ________________________________

You have 10 minutes for this quiz.

1. (3 points) Carefully write down the content of The Mean Value Theorem.

Let \(f \) be a function satisfying the following:

1. \(f \) is continuous on \([a, b]\)
2. \(f \) is differentiable on \((a, b)\)

Then there is a number \(c \) in \((a, b)\) such that

\[f'(c) = \frac{f(b) - f(a)}{b - a} \]

2. (3 points) A function \(f \) has the following second derivative. Determine the \(x \)-value for each inflection point on the graph of \(f \).

\[f''(x) = 4e^x(x-3)(x-5)^2 \]

Since \(4e^x \) and \((x-5)^2\) are never negative and \((x-3)\) is negative when \(x < 3 \) and positive when \(x > 3 \), \(f''(x) = 4e^x(x-3)(x-5)^2 \) is negative for \(x < 3 \) and positive for \(x > 3 \) (except for \(x = 5 \), where \(f''(x) = 0 \)), so the only inflection point is at \(x = 3 \).
3. (4 points) Upon which interval is the graph of \(f(x) = 2 + 3xe^{-4x} \) increasing?

\[
f'(x) = 3e^{-4x} - 12xe^{-4x} = 3e^{-4x}(1-4x).
\]

Since \(3e^{-4x} \) is always positive and \(1-4x > 0 \iff x < \frac{1}{4} \), we have

\[
f'(x) = 3e^{-4x}(1-4x) > 0 \iff x < \frac{1}{4}.
\]

Thus \(f(x) \) is increasing on the interval \((-\infty, \frac{1}{4}) \).