1. Write down an equation to show that the circumference of a circle is proportional to its radius. What is the constant of proportionality?

\[C = k \cdot r \] where the constant of proportionality \(k \) is equal to \(2\pi \)

2. Write down an equation to show that the area of an equilateral triangle is proportional to the square of its side length. What is the constant of proportionality?

\[A = k \cdot s^2 \] where the constant of proportionality \(k \) is equal to \(\frac{\sqrt{3}}{4} \)

3. After the brakes are applied in an automobile, it will still travel a certain distance before coming to rest. This is referred to as the automobile’s stopping distance, and it is directly proportional to the square of the automobile’s speed. If an automobile has a stopping distance of 45 feet when traveling at 30 miles per hour, then what is the stopping distance of the same automobile traveling at 60 miles per hour?

180 feet

4. The population of a town is currently 4000. Letting \(P \) represent the town’s population \(t \) years from now, write down a differential equation with initial value to model the population under the following conditions.

(a) The population is growing at a rate of 40 people per year.

\[\frac{dP}{dt} = 40 \quad \text{and} \quad P(0) = 4000 \]

(b) The population is growing at a rate which is proportional to the population size with a constant of proportionality of 0.05.

\[\frac{dP}{dt} = 0.05P \quad \text{and} \quad P(0) = 4000 \]

5. Suppose that 500 northern pike are released into a man-made lake which had no northern pike beforehand. Write down a differential equation with initial value to model the number of these fish under the following conditions.

(a) This fish population decreases by 40 fish per year.

\[\frac{dP}{dt} = -40 \quad \text{and} \quad P(0) = 500 \]

(b) This fish population grows at a continuous growth rate of 6% per year.

\[\frac{dP}{dt} = 0.06P \quad \text{and} \quad P(0) = 500 \]

6. Alice was standing in a room with a 12 foot ceiling. She is normally only 4 feet tall, but after drinking liquid from a strange bottle, she started to grow at a rate which is proportional to the product of her height and the distance from the top of her head to the ceiling. If \(h \) represents Alice’s height at time \(t \), then find the differential equation which models her height.

\[\frac{dh}{dt} = kh(12 - h) \quad \text{and} \quad h(0) = 4 \]
7. Newton’s Law of Cooling states that the rate at which an object cools is proportional to the difference between its temperature and that of its surroundings.

(a) Using T for temperature at time t, k for the constant of proportionality, and T_s for the surrounding temperature, determine a differential equation which models the object’s temperature.

$$\frac{dT}{dt} = k(T - T_s)$$

(b) A fresh cup of coffee has a temperature of 90°C and is brought into a room where the temperature is 20°C. Suppose k has the value of -0.1°C per minute per °C of temperature difference. Write down the differential equation which models the coffee’s temperature.

$$\frac{dT}{dt} = -0.1(T - 20) \quad \text{and} \quad T(0) = 90$$

8. Suppose y is a function of x which satisfies the following differential equation.

$$\frac{dy}{dx} = 2x, \quad y(0) = 1$$

(a) Use Euler’s Method with $\Delta x = 1$ to approximate $y(2)$.

<table>
<thead>
<tr>
<th>x_{current}</th>
<th>y_{current}</th>
<th>y'_{current}</th>
<th>$y_{\text{next}} \approx y_{\text{current}} + y'_{\text{current}} \cdot \Delta x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1.0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2.0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using Euler’s Method with $\Delta x = 1$, we obtain the estimate $y(2) \approx 3$

(b) Use Euler’s Method with $\Delta x = 0.5$ to approximate $y(2)$.

<table>
<thead>
<tr>
<th>x_{current}</th>
<th>y_{current}</th>
<th>y'_{current}</th>
<th>$y_{\text{next}} \approx y_{\text{current}} + y'_{\text{current}} \cdot \Delta x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>1.0</td>
<td>1.5</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>1.5</td>
<td>2.5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2.0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using Euler’s Method with $\Delta x = 0.5$, we obtain the estimate $y(2) \approx 4$
(c) Use Euler’s Method with $\Delta x = 0.1$ to approximate $y(2)$.

<table>
<thead>
<tr>
<th>x_{current}</th>
<th>y_{current}</th>
<th>y'_{current}</th>
<th>$y_{\text{next}} \approx y_{\text{current}} + y'_{\text{current}} \cdot \Delta x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.00</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>0.1</td>
<td>1.00</td>
<td>0.2</td>
<td>1.02</td>
</tr>
<tr>
<td>0.2</td>
<td>1.02</td>
<td>0.4</td>
<td>1.06</td>
</tr>
<tr>
<td>0.3</td>
<td>1.06</td>
<td>0.6</td>
<td>1.12</td>
</tr>
<tr>
<td>0.4</td>
<td>1.12</td>
<td>0.8</td>
<td>1.20</td>
</tr>
<tr>
<td>0.5</td>
<td>1.20</td>
<td>1.0</td>
<td>1.30</td>
</tr>
<tr>
<td>0.6</td>
<td>1.30</td>
<td>1.2</td>
<td>1.42</td>
</tr>
<tr>
<td>0.7</td>
<td>1.42</td>
<td>1.4</td>
<td>1.56</td>
</tr>
<tr>
<td>0.8</td>
<td>1.56</td>
<td>1.6</td>
<td>1.72</td>
</tr>
<tr>
<td>0.9</td>
<td>1.72</td>
<td>1.8</td>
<td>1.90</td>
</tr>
<tr>
<td>1.0</td>
<td>1.90</td>
<td>2.0</td>
<td>2.10</td>
</tr>
<tr>
<td>1.1</td>
<td>2.10</td>
<td>2.2</td>
<td>2.32</td>
</tr>
<tr>
<td>1.2</td>
<td>2.32</td>
<td>2.4</td>
<td>2.56</td>
</tr>
<tr>
<td>1.3</td>
<td>2.56</td>
<td>2.6</td>
<td>2.82</td>
</tr>
<tr>
<td>1.4</td>
<td>2.82</td>
<td>2.8</td>
<td>3.10</td>
</tr>
<tr>
<td>1.5</td>
<td>3.10</td>
<td>3.0</td>
<td>3.40</td>
</tr>
<tr>
<td>1.6</td>
<td>3.40</td>
<td>3.2</td>
<td>3.72</td>
</tr>
<tr>
<td>1.7</td>
<td>3.72</td>
<td>3.4</td>
<td>4.06</td>
</tr>
<tr>
<td>1.8</td>
<td>4.06</td>
<td>3.6</td>
<td>4.42</td>
</tr>
<tr>
<td>1.9</td>
<td>4.42</td>
<td>3.8</td>
<td>4.80</td>
</tr>
<tr>
<td>2.0</td>
<td>4.80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using Euler’s Method with $\Delta x = 0.1$, we obtain the estimate $y(2) \approx 4.8$

(d) Find an explicit formula for y which satisfies the differential equation. Use the formula to find the exact value of $y(2)$. Compare your approximations in parts (a) – (d).

Using the explicit formula $y = x^2 + 1$, we obtain the exact value $y(2) = 5$
9. On problem 7b we found the coffee’s temperature to be modeled by the following differential equation.

\[
\frac{dT}{dt} = -0.1(T - 20), \quad T(0) = 90
\]

(a) Use Euler’s method with the value of \(\Delta t \) shown to approximate the coffee’s temperature after 10 minutes.

<table>
<thead>
<tr>
<th>(t_{\text{current}})</th>
<th>(T_{\text{current}})</th>
<th>(T'_{\text{current}})</th>
<th>(T_{\text{next}} \approx T_{\text{current}} + T'_{\text{current}} \cdot \Delta t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>90</td>
<td>-7</td>
<td>72.5</td>
</tr>
<tr>
<td>2.5</td>
<td>72.5</td>
<td>-5.25</td>
<td>59.38</td>
</tr>
<tr>
<td>5.0</td>
<td>59.38</td>
<td>-3.94</td>
<td>49.53</td>
</tr>
<tr>
<td>7.5</td>
<td>49.53</td>
<td>-2.95</td>
<td>42.15</td>
</tr>
<tr>
<td>10.0</td>
<td>42.15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using Euler’s Method with \(\Delta t = 2.5 \), we obtain the estimate \(T(10) \approx 42.15 \)

(b) Be sure to make a couple of additional tables with smaller values chosen for \(\Delta t \). If you are proficient at computer programming or using spreadsheets such as Excel, then your smallest value for \(\Delta t \) may be as small as 0.01. The rest of us should at least be willing to use \(\Delta t = 0.5 \).

<table>
<thead>
<tr>
<th>(t_{\text{current}})</th>
<th>(T_{\text{current}})</th>
<th>(T'_{\text{current}})</th>
<th>(T_{\text{next}} \approx T_{\text{current}} + T'_{\text{current}} \cdot \Delta t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>90.00</td>
<td>-7.00</td>
<td>83.00</td>
</tr>
<tr>
<td>1</td>
<td>83.00</td>
<td>-6.30</td>
<td>76.70</td>
</tr>
<tr>
<td>2</td>
<td>76.70</td>
<td>-5.67</td>
<td>71.03</td>
</tr>
<tr>
<td>3</td>
<td>71.03</td>
<td>-5.10</td>
<td>65.93</td>
</tr>
<tr>
<td>4</td>
<td>65.93</td>
<td>-4.59</td>
<td>61.33</td>
</tr>
<tr>
<td>5</td>
<td>61.33</td>
<td>-4.13</td>
<td>57.20</td>
</tr>
<tr>
<td>6</td>
<td>57.20</td>
<td>-3.72</td>
<td>53.48</td>
</tr>
<tr>
<td>7</td>
<td>53.48</td>
<td>-3.35</td>
<td>50.13</td>
</tr>
<tr>
<td>8</td>
<td>50.13</td>
<td>-3.01</td>
<td>47.12</td>
</tr>
<tr>
<td>9</td>
<td>47.12</td>
<td>-2.71</td>
<td>44.41</td>
</tr>
<tr>
<td>10</td>
<td>44.41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using Euler’s Method with \(\Delta t = 1 \), we obtain the estimate \(T(10) \approx 44.41 \)
Using Euler's Method with $\Delta t = 0.5$, we obtain the estimate $T(10) \approx 45.09$

Using Euler's Method with $\Delta t = 0.1$, we obtain the estimate $T(10) \approx 45.62$

Using Euler's Method with $\Delta t = 0.01$, we obtain the estimate $T(10) \approx 45.74$

Although it wasn’t asked for in this problem, separation of variables does lead to the explicit formula $T = 20 + 70e^{-0.1t}$. Thus we obtain the exact value $T(10) = 20 + 70e^{-1} \approx 45.75$
10. Suppose P is a function of t which satisfies the following differential equation.

\[
\frac{dP}{dt} = 0.1P, \quad P(0) = 100
\]

(a) Make tables similar to those used in problem 8 to approximate $P(3)$ using Euler’s Method.

<table>
<thead>
<tr>
<th>t_{current}</th>
<th>P_{current}</th>
<th>P'_{current}</th>
<th>$P_{\text{next}} \approx P_{\text{current}} + P'_{\text{current}} \cdot \Delta t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>100</td>
<td>10.0</td>
<td>110.0</td>
</tr>
<tr>
<td>1.0</td>
<td>110.0</td>
<td>11.0</td>
<td>121.0</td>
</tr>
<tr>
<td>2.0</td>
<td>121.0</td>
<td>12.1</td>
<td>133.1</td>
</tr>
<tr>
<td>3.0</td>
<td>133.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using Euler’s Method with $\Delta t = 1$, we obtain the estimate $P(3) \approx 133.1$

<table>
<thead>
<tr>
<th>t_{current}</th>
<th>P_{current}</th>
<th>P'_{current}</th>
<th>$P_{\text{next}} \approx P_{\text{current}} + P'_{\text{current}} \cdot \Delta t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>100</td>
<td>10.00</td>
<td>105.00</td>
</tr>
<tr>
<td>0.5</td>
<td>105.00</td>
<td>10.50</td>
<td>110.25</td>
</tr>
<tr>
<td>1.0</td>
<td>110.25</td>
<td>11.03</td>
<td>115.76</td>
</tr>
<tr>
<td>1.5</td>
<td>115.76</td>
<td>11.58</td>
<td>121.56</td>
</tr>
<tr>
<td>2.0</td>
<td>121.56</td>
<td>12.16</td>
<td>127.63</td>
</tr>
<tr>
<td>2.5</td>
<td>127.63</td>
<td>12.76</td>
<td>134.01</td>
</tr>
<tr>
<td>3.0</td>
<td>134.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using Euler’s Method with $\Delta t = 0.5$, we obtain the estimate $P(3) \approx 134.01$

Using Euler’s Method with $\Delta t = 0.1$, we obtain the estimate $P(3) \approx 134.78$

Using Euler’s Method with $\Delta t = 0.05$, we obtain the estimate $P(3) \approx 134.89$

Using Euler’s Method with $\Delta t = 0.01$, we obtain the estimate $P(3) \approx 134.97$

(b) Can you find an explicit formula for P which satisfies the differential equation? If so, then use the formula to find the exact value of $P(3)$. How do your approximations compare to exact value?

Using the explicit formula $P = 100e^{0.1t}$, we obtain the exact value $P(3) = 100e^{0.3} \approx 134.99$
11. Use Euler’s method to estimate the population 6 years from now in problems 4a, 4b, 5a, and 5b. Use \(\Delta t = 2 \), \(\Delta t = 1 \), and \(\Delta t = 0.5 \) for each problem. Find an explicit formula for the population in each of these problems. How do your estimates compare to the exact populations 6 years from now?

Using a computer I will include the results with \(\Delta t = 0.1 \) and \(\Delta t = 0.01 \).

(4a) Using Euler’s Method with \(\Delta t = 2 \), we obtain the estimate \(P(6) \approx 4240 \text{ people} \)

Using Euler’s Method with \(\Delta t = 1 \), we obtain the estimate \(P(6) \approx 4240 \text{ people} \)

Using Euler’s Method with \(\Delta t = 0.5 \), we obtain the estimate \(P(6) \approx 4240 \text{ people} \)

Using Euler’s Method with \(\Delta t = 0.1 \), we obtain the estimate \(P(6) \approx 4240 \text{ people} \)

Using Euler’s Method with \(\Delta t = 0.01 \), we obtain the estimate \(P(6) \approx 4240 \text{ people} \)

Using the explicit formula \(P = 40t + 4000 \), the exact value is \(P(6) = 4240 \text{ people} \)

(4b) Using Euler’s Method with \(\Delta t = 2 \), we obtain the estimate \(P(6) \approx 5324 \text{ people} \)

Using Euler’s Method with \(\Delta t = 1 \), we obtain the estimate \(P(6) \approx 5360.383 \approx 5360 \text{ people} \)

Using Euler’s Method with \(\Delta t = 0.5 \), we obtain the estimate \(P(6) \approx 5379.555 \approx 5380 \text{ people} \)

Using Euler’s Method with \(\Delta t = 0.1 \), we obtain the estimate \(P(6) \approx 5395.401 \approx 5395 \text{ people} \)

Using Euler’s Method with \(\Delta t = 0.01 \), we obtain the estimate \(P(6) \approx 5399.030 \approx 5399 \text{ people} \)

Using the explicit formula \(P = 4000e^{0.05t} \), the exact value is \(P(6) = 4000e^{0.3} \approx 5399.435 \approx 5399 \text{ people} \)
Using Euler’s Method with $\Delta t = 2$, we obtain the estimate $P(6) \approx 260$ fish

Using Euler’s Method with $\Delta t = 1$, we obtain the estimate $P(6) \approx 260$ fish

Using Euler’s Method with $\Delta t = 0.5$, we obtain the estimate $P(6) \approx 260$ fish

Using Euler’s Method with $\Delta t = 0.1$, we obtain the estimate $P(6) \approx 260$ fish

Using Euler’s Method with $\Delta t = 0.01$, we obtain the estimate $P(6) \approx 260$ fish

Using the explicit formula $P = -40t + 500$, the exact value is $P(6) = 260$ fish

Using Euler’s Method with $\Delta t = 2$, we obtain the estimate $P(6) \approx 702.464 \approx 702$ fish

Using Euler’s Method with $\Delta t = 1$, we obtain the estimate $P(6) \approx 709.260 \approx 709$ fish

Using Euler’s Method with $\Delta t = 0.5$, we obtain the estimate $P(6) \approx 712.880 \approx 713$ fish

Using Euler’s Method with $\Delta t = 0.1$, we obtain the estimate $P(6) \approx 715.894 \approx 716$ fish

Using Euler’s Method with $\Delta t = 0.01$, we obtain the estimate $P(6) \approx 716.587 \approx 717$ fish

Using the explicit formula $P = 500e^{0.06t}$, the exact value is $P(6) = 500e^{0.36} \approx 716.665 \approx 717$ fish