• **LINEAR GROWTH** \((m = \text{slope}, \ P_0 = \text{initial value})\)

<table>
<thead>
<tr>
<th>Type</th>
<th>Linear Model</th>
<th>Explicit Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>continuous</td>
<td>(\frac{dP}{dt} = m)</td>
<td>(P = mt + P_0)</td>
</tr>
<tr>
<td>discrete</td>
<td>(P(n) = P(n - 1) + m)</td>
<td>(P = mt + P_0)</td>
</tr>
</tbody>
</table>

• **EXPONENTIAL GROWTH** \((r = \text{growth rate}, \ P_0 = \text{initial value})\)

<table>
<thead>
<tr>
<th>Type</th>
<th>Exponential Model</th>
<th>Explicit Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>continuous</td>
<td>(\frac{dP}{dt} = rP)</td>
<td>(P = P_0e^{rt})</td>
</tr>
<tr>
<td>discrete</td>
<td>(P(n) = P(n - 1) + rP(n - 1))</td>
<td>(P = P_0(1 + r)^n)</td>
</tr>
</tbody>
</table>

• **LOGISTIC GROWTH** \((r = \text{growth rate}, \ k = \text{carrying capacity}, \ P_0 = \text{initial value})\)

<table>
<thead>
<tr>
<th>Type</th>
<th>Logistic Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>continuous</td>
<td>(\frac{dP}{dt} = rP\left(1 - \frac{P}{k}\right))</td>
</tr>
<tr>
<td>discrete</td>
<td>(P(n) = P(n - 1) + rP(n - 1)\left(1 - \frac{P(n - 1)}{k}\right))</td>
</tr>
</tbody>
</table>
1. If P represents some population t years from now, and $\frac{dP}{dt} = 20$, then which of the following statements is correct?
 (a) P grows linearly by 20 people per year.
 (b) P grows linearly by 120 people per year.
 (c) P grows exponentially by 20% per year.
 (d) P grows logistically with a carrying capacity of 20.

2. If P represents some population n years from now, and $P(n) = 1.2P(n-1)$, then which of the following statements is correct?
 (a) P grows linearly by 20 people per year.
 (b) P grows linearly by 120 people per year.
 (c) P grows exponentially by 20% per year.
 (d) P grows logistically with a carrying capacity of 120.

3. The population of a city was 5000 in 1980. Since then the population has been increasing by 100 people per year.
 (a) Determine a discrete dynamical system with initial value to model the city’s population.
 $P(n) = P(n-1) + 100$ and $P(0) = 5000$
 (b) Determine a differential equation with initial value to model the city’s population.
 $\frac{dP}{dt} = 100$ and $P(0) = 5000$
 (c) Determine an explicit formula for the city’s population.
 $P = 100t + 5000$
 (d) What does your model predict for the city’s population in the year 2000?
 7000
 (e) When does your model predict the population will have reached 10000?
 In the year 2030

4. An initial deposit of $200 is made into an account with an annual percentage rate (APR) of 3% compounded annually.
 (a) Determine a discrete dynamical system with initial value to model the amount of money in this account.
 $A(n) = 1.03A(n-1)$ and $A(0) = 200$
 (b) Determine an explicit formula for the amount of money in this account.
 $A = 200(1.03)^n$
 (c) How much money will the account hold 8 years after the initial deposit?
 $253.35
(d) How long will it take until the balance in this account is $500?

\[31.0 \text{ years}\]

5. An initial deposit of 200 is made into an account with an annual percentage rate (APR) of 3% compounded continuously.

(a) Determine a differential equation with initial value to model the amount of money in this account.

\[
\frac{dA}{dt} = 0.03A \quad \text{and} \quad A(0) = 200
\]

(b) Determine an explicit formula for the amount of money in this account.

\[A = 200e^{0.03t}\]

(c) How much money will the account hold 8 years after the initial deposit?

\[$254.25\]

(d) How long will it take until the balance in this account is $500?

\[30.5 \text{ years}\]

6. Why did I suggest using a discrete dynamical system for problem (4), but a differential equation for problem (5)?

The interest was compounded annually for problem (4) but continuously for problem (5).

7. The number of fish in a pond was 300 in 1970. Since then the number of fish has been increasing by 5% per year.

(a) Determine a discrete dynamical system with initial value to model the number of fish in this pond.

If we let \(F(n)\) represent the number of fish \(n\) years after 1970, then

\[F(n) = 1.05F(n - 1) \quad \text{and} \quad F(0) = 300\]

(b) Enter this system into your calculator to make a table of values for the number of fish in the pond each year from 1970 to 1980.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(F(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>300.00</td>
</tr>
<tr>
<td>1</td>
<td>315.00</td>
</tr>
<tr>
<td>2</td>
<td>330.75</td>
</tr>
<tr>
<td>3</td>
<td>347.29</td>
</tr>
<tr>
<td>4</td>
<td>364.65</td>
</tr>
<tr>
<td>5</td>
<td>382.88</td>
</tr>
<tr>
<td>6</td>
<td>402.03</td>
</tr>
<tr>
<td>7</td>
<td>422.13</td>
</tr>
<tr>
<td>8</td>
<td>443.24</td>
</tr>
<tr>
<td>9</td>
<td>465.40</td>
</tr>
<tr>
<td>10</td>
<td>488.67</td>
</tr>
</tbody>
</table>

(c) Determine an explicit formula for the number of fish in the pond.

\[F(n) = 300(1.05)^n\]
(d) When will the fish population reach 750?

18.8 years later

8. The number of fish in a pond was 300 in 1970. Since then the number of fish has been increasing by 5% per year.

(a) Determine a differential equation with initial value to model the number of fish in this pond.

\[
\frac{dF}{dt} = 0.05F \quad \text{and} \quad F(0) = 300
\]

(b) Use Euler's Method with \(\Delta t = 1 \) to make a table of values for the number of fish in the pond each year from 1970 to 1980.

Since \(\Delta t = 1 \), our table will have the same values as the discrete dynamical system shown in #7b.

(c) Determine an explicit formula for the number of fish in the pond.

\[
F(t) = 300e^{0.05t}
\]

(d) When will the fish population reach 750?

18.3 years later

9. Which model was best to use for the fish population – the discrete dynamical system or the differential equation? Why?

discussed in class

10. There are currently 5000 deer in a forest. Suppose the population of deer grows logistically with an intrinsic growth rate of 6% and a carrying capacity of 20,000.

(a) Sketch a rough graph of the deer population.

graph shown in class

(b) Determine a discrete dynamical system with initial value to model the deer population.

If we let \(D(n) \) represent the number of deer \(n \) years from now, then

\[
D(n) = D(n - 1) + 0.06D(n - 1) \left(1 - \frac{D(n - 1)}{20000}\right) \quad \text{and} \quad D(0) = 5000
\]

(c) Make a table of values for the number of deer your discrete model predicts for the next 4 years.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(D(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5000.0</td>
</tr>
<tr>
<td>1</td>
<td>5225.0</td>
</tr>
<tr>
<td>2</td>
<td>5456.6</td>
</tr>
<tr>
<td>3</td>
<td>5694.7</td>
</tr>
<tr>
<td>4</td>
<td>5939.1</td>
</tr>
</tbody>
</table>

(d) Determine a differential equation with initial value to model the deer population.

\[
\frac{dD}{dt} = 0.06D \left(1 - \frac{D}{20000}\right) \quad \text{and} \quad D(0) = 5000
\]
(e) Use Euler's Method with $\Delta t = 1$ to make a table of values for the number of deer your continuous model predicts for the next 4 years.

\[
\begin{array}{|c|c|c|c|}
\hline
 t_{old} & D_{old} & D'_{old} & D_{new} \approx D_{old} + D'_{old} \cdot \Delta t \\
\hline
 0 & 5000.0 & 225.0 & 5225.0 \\
 1 & 5225.0 & 231.6 & 5456.6 \\
 2 & 5456.6 & 238.1 & 5694.7 \\
 3 & 5694.7 & 244.4 & 5939.1 \\
 4 & 5939.1 & & \\
\hline
\end{array}
\]

Note that since $\Delta t = 1$, our table has the same values as the discrete dynamical system shown in part c.

(f) Use Euler's Method with $\Delta t = 0.5$ to make a table of values for the number of deer your continuous model predicts for the next 4 years.

\[
\begin{array}{|c|c|c|c|}
\hline
 t_{old} & D_{old} & D'_{old} & D_{new} \approx D_{old} + D'_{old} \cdot \Delta t \\
\hline
 0.0 & 5000.00 & 225.00 & 5112.50 \\
 0.5 & 5112.50 & 228.34 & 5226.67 \\
 1.0 & 5226.67 & 231.65 & 5342.50 \\
 1.5 & 5342.50 & 234.92 & 5459.96 \\
 2.0 & 5459.96 & 238.16 & 5579.04 \\
 2.5 & 5579.04 & 241.37 & 5699.73 \\
 3.0 & 5699.73 & 244.52 & 5821.99 \\
 3.5 & 5821.99 & 247.63 & 5945.81 \\
 4.0 & 5945.81 & & \\
\hline
\end{array}
\]

(g) How close are the approximations for discrete and continuous models?

[discussed in class]