1. (10 points) The population of an animal species is given by \(P(t) = 5t^2 + 30t + 2500 \) where \(t \) represents the number of months since January 1, 2004. How quickly is the population growing 1 year later?

2. (12 points) Using \(P \) for your dependent variable, \(t \) for your independent variable, and \(k, r, m, \) or \(C \) for any necessary constants, write down the general form for a differential equation which models each of the following types of growth.

(a) logistic growth

(b) linear growth

(c) exponential growth
3. (5 points) If \(f(x) = 3x^5 + 10 \), then

\[f'(x) = \]

4. (5 points) If \(y = \frac{2}{x^3} \), then

\[\frac{dy}{dx} = \]

5. (5 points) If \(w = 2e^{3t} \), then

\[\frac{dw}{dt} = \]

6. (5 points) If \(h = e^{-t} \), then

\[\frac{dh}{dt} = \]
7. (10 points) Suppose that 500 trout are released into a man-made lake which had no trout before. Further suppose that the trout population, \(P \), grows logistically according to the following differential equation where \(t \) represents the number of years since the initial release of the trout.

\[
\frac{dP}{dt} = 0.1P \left(1 - \frac{P}{2500}\right), \quad P(0) = 500
\]

(a) As a percentage, what is the intrinsic growth rate of this trout population?

(b) What is the carrying capacity for this trout population?

(c) Sketch a rough graph of this trout population being sure to show any long-term behavior.
8. (12 points) Suppose \(y \) is a function of \(t \) which satisfies the differential equation

\[
\frac{dy}{dt} = \frac{3(y - 6)(y - 24)}{20}
\]

(a) For which values of \(y \) is the quantity \(y \) increasing?

(b) For which values of \(y \) is the quantity \(y \) decreasing?

(c) For which values of \(y \) is the quantity \(y \) in equilibrium? Determine whether each of these equilibrium values is stable or unstable.
9. (14 points) Suppose that 100 rabbits are released on an island that had no previous rabbits. Let \(R \) denote the rabbit population \(t \) months after they were released. The rabbit population grows at a rate which is proportional to the population size itself, where the constant of proportionality is 0.05 (i.e. a continuous growth rate of 5% per month).

(a) Write down a differential equation with initial condition for the growth of this rabbit population.

(b) Find a formula for \(R \) as a function of \(t \).

(c) Use your formula to determine the number of rabbits on the island 12 months after they were released.
10. (10 points) Find a formula for y as a function of t in the following initial value problems.

(a) $\frac{dy}{dt} = 6t^2 + 5, \quad y(0) = 8$

(b) $\frac{dy}{dt} = \frac{2t}{3y^2}, \quad y(0) = 5$
11. (12 points) Given the following initial value problem, use Euler’s Method with $\Delta t = 2$ to estimate $y(6)$.

\[
\frac{dy}{dt} = \sqrt{y}, \quad y(0) = 10
\]