1. (10 points) Evaluate the following integral.

\[\int \frac{dx}{x^2 \sqrt{x^2 + 4}} \]

2. (10 points) Evaluate the following integral.

\[\int \frac{dx}{x^2 - 6x + 8} \]
3. (10 points) Evaluate the following integral.

\[\int \frac{dx}{x^2 - 6x + 10} \]

4. (10 points) Evaluate the following integral.

\[\int \frac{2x - 5}{x - 3} \, dx \]
5. (10 points) Evaluate the following integral.

\[\int \frac{2x^2}{(x - 1)(x^2 + 1)} \, dx \]

6. (10 points) Evaluate the following integral. Use proper notation for each step in your work.

\[\int_3^\infty \frac{6}{x^2} \, dx \]
7. (10 points) Evaluate the following integral. Use proper notation for each step in your work.

\[\int_{1}^{3} \frac{dx}{x - 1} \]

8. (10 points) Write out the first five terms of the sequence, determine if the sequence converges, and if so find its limit.

\[\left\{ \frac{\ln k}{k} \right\}_{k=2}^{+\infty} \]
9. (10 points) Show that the given sequence is eventually strictly increasing or eventually strictly decreasing. Which one? You must fully justify your claim and include the value that \(n \) needs to exceed for this to occur.

\[\{ 15n - n^2 \}_{n=1}^{+\infty} \]

10. (5 points) Show how to define the sequence below more concisely using curly braces and a general term as in the problem above.

\[
\begin{array}{cccccccc}
1 & -1 & 1 & -1 & 1 & -1 & 1 \\
4 & 9 & 16 & 25 & 36 & 49 & 64 & \cdots
\end{array}
\]
11. (5 points) Consider the sequence \(\{a_n\}_{n=1}^{+\infty} \) where

\[
a_1 = \sqrt{2} \\
a_2 = \sqrt{2 + \sqrt{2}} \\
a_3 = \sqrt{2 + \sqrt{2 + \sqrt{2}}} \\
a_4 = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}} \\
a_5 = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}}} \\
\vdots
\]

(a) Find a recursion formula for \(a_{n+1} \).

(b) Assuming the sequence converges, find its limit.