1. (2 points) Suppose \(P(t) = 80(0.9)^t \) represents some population \(t \) years from now. Which one of the following statements is true?

(a) The population will increase by 10% per year.
(b) The population will increase by 10 people per year.
(c) The population will increase by 20% per year.
(d) The population will increase by 20 people per year.
(e) The population will increase by 80% per year.
(f) The population will increase by 80 people per year.
(g) The population will increase by 90% per year.
(h) The population will increase by 90 people per year.
(i) The population will decrease by 10% per year.
(j) The population will decrease by 10 people per year.
(k) The population will decrease by 20% per year.
(l) The population will decrease by 20 people per year.
(m) The population will decrease by 80% per year.
(n) The population will decrease by 80 people per year.
(o) The population will decrease by 90% per year.
(p) The population will decrease by 90 people per year.

2. (2 points) Given that \(35 = 10(7)^t + 5 \). Without using a calculator find the exact value of \(t \).

(a) \(\frac{3}{7} \)
(b) \(\ln \left(\frac{3}{7} \right) \)
(c) \(\ln \left(\frac{7}{3} \right) \)
(d) \(\frac{\ln 3}{\ln 7} \)
(e) \(\frac{\ln 7}{\ln 3} \)

(f) \(\frac{5}{7} \)
(g) \(\ln \left(\frac{5}{7} \right) \)
(h) \(\ln \left(\frac{7}{5} \right) \)
(i) \(\frac{\ln 5}{\ln 7} \)
(j) \(\frac{\ln 7}{\ln 5} \)
3. (3 points) In the year 1980 a town’s population was 20,000. In the year 2000 its population was 40,000. If the population grew exponentially, then what was the annual percentage increase over this period?

4. (3 points) A product costs $200 today but the cost will be reduced by 4% per day. Find a formula for $A(t)$, the cost in dollars of the product t days from now.