1. The amount in her account t years from now is given by $A(t) = 600e^{0.045t}$.

 A. Letting $t = 9$, we find that her account will have 899.58 in 9 years.

 B.

 \[
 1500 = 600e^{0.045t} \\
 2.5 = e^{0.045t} \\
 \ln 2.5 = 0.045t \\
 t = \frac{\ln 2.5}{0.045} \approx 20.4
 \]

 It will take approximately 20.4 years for the balance in her account to reach 1500.

2. A function which grows exponentially can be written as $A = A_0e^{rt}$.

 \[
 3A_0 = A_0e^{r \cdot 6} \\
 3 = e^{6r} \\
 \ln 3 = 6r \\
 r = \frac{\ln 3}{6} \approx 0.1831
 \]

 \[
 A \approx A_0e^{0.1831t}
 \]

 \[
 2A_0 \approx A_0e^{0.1831t} \\
 2 \approx e^{0.1831t} \\
 \ln 2 \approx 0.1831t \\
 t \approx \frac{\ln 2}{0.1831} \approx 3.8 \text{ hours}
 \]

3. (a) From the graph of $C(q)$ we see that $C(0) = 3000$, so the fixed costs are 3000.

 (b) From the graph, we see that the points $(0, 3000)$ and $(80, 5000)$ are on this line. We compute the slope to be 25. The formula for the line is then $C(q) = 25q + 3000$.

 (c) The revenue function is given by $R(q) = 100q$. Its graph is a line which goes through the origin and the top right corner of the grid shown.

 (d) If your graphs are drawn carefully, you can see that the break-even point occurs when the graphs intersect at $q = 40$. You can also set revenue equal to cost to obtain

 \[
 100q = 25q + 3000 \\
 75q = 3000 \\
 q = 40
 \]