1. (6 points) Let V be $C^0[0, 1]$, the vector space of real-valued functions that are defined and continuous on $[0, 1]$. Show that the subset

$$W = \{ f \in V | f(0) = f(1) \}$$

is a subspace of V.

Answer: Let f and g lie in W. This means that f and g are continuous and $f(0) = f(1)$ and $g(0) = g(1)$. Then for any real numbers c and d

$$(cf + dg)(0) = cf(0) + dg(0)$$
$$= cf(1) + dg(1)$$
$$= (cf + dg)(1)$$

In addition, $cf + dg$ is also a continuous function and so $cf + dg$ lies once again in W. Thus W is a subspace of V.

2. (12 points) A certain digraph has the incident matrix

$$A = \begin{pmatrix}
1 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 & -1
\end{pmatrix}$$

(a) Draw a digraph that corresponds to this matrix.

Answer: (3 points)
(b) What is a basis for \(\ker A \)?

Answer: (1 points) The single vector \(\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \end{pmatrix}^T \) is a basis for the kernel (proved in class).

(c) By finding a basis for one of the other fundamental subspaces of \(A \), find the independent circuits in this digraph.

Answer: (8 points) In this case we need to find a basis of the cokernel of \(A \):

\[
A^T = \begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 1 \\
0 & -1 & 0 & 0 & 0 & -1 \\
\end{pmatrix} \to \begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 1 \\
0 & 0 & 1 & 1 & 0 & -1 \\
\end{pmatrix} \to \begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 1 \\
0 & 0 & 1 & 1 & 0 & -1 \\
\end{pmatrix} \to \begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

If our variables are \(x, y, z, u, v, w \), then \(u = -v + w, z = v, y = -z - u = -v - (-v + w) = -w, x = -y = w \) so

\[
\begin{pmatrix} x \\ y \\ z \\ u \\ v \\ w \end{pmatrix} = \begin{pmatrix} w \\ -w \\ v \\ -v + w \\ v \\ w \end{pmatrix} = v \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + w \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}
\]

Thus the independent circuits are (3)+(5)-(4) and (1)+(4)+(6)-(2).

3. (12 points) Let

\[
\langle x, y \rangle = x^T K y \quad \text{where} \quad K = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}
\]

(a) Verify that \(\langle x, y \rangle \) given above defines a valid inner product on \(\mathbb{R}^3 \).

Answer: (6 points) In class we showed that all inner products on \(\mathbb{R}^3 \) have the form \(x^T K y \) provided that \(K \) is symmetric and positive definite. To show that \(K \) is positive definite use Gaussian Elimination:

\[
K = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \to \begin{pmatrix} 2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & -1 & 2 \end{pmatrix} \to \begin{pmatrix} 2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & 0 & \frac{4}{3} \end{pmatrix}
\]

Since all pivots are positive, \(K \) is positive definite.
(b) Find a basis for the set of all vectors that are orthogonal to \(\begin{pmatrix} 1 & 2 & 1 \end{pmatrix}^T \) in terms of the inner product given above.

Answer: (6 points) Setting \(\mathbf{x} = (x \ y \ z)^T \), we need

\[
0 = \langle \mathbf{x}, (1 \ 2 \ 1)^T \rangle = (x \ y \ z) \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = 2y
\]

Thus \(y = 0 \) and \(x \) and \(z \) are free variables, so

\[
\mathbf{x} = \begin{pmatrix} x \\ 0 \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\]

and so \(e_1 \) and \(e_3 \) are a basis

4. (10 points) Find the least squares solution to the following system:

\[
\begin{align*}
2x + y &= 1 \\
x - y &= 2 \\
x + 5y &= 3
\end{align*}
\]

Answer: Set

\[
A = \begin{pmatrix} 2 & 1 \\ 1 & -1 \\ 1 & 5 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}
\]

Then we need to solve \(Kx = f \) where

\[
K = A^T A = \begin{pmatrix} 2 & 1 \\ 1 & -1 \\ 1 & 5 \end{pmatrix}^T \begin{pmatrix} 2 & 1 \\ 1 & -1 \\ 1 & 5 \end{pmatrix} = \begin{pmatrix} 6 & 6 & 6 \\ 6 & 6 & 27 \end{pmatrix}
\]

\[
f = A^T b = \begin{pmatrix} 2 & 1 \\ 1 & -1 \\ 1 & 5 \end{pmatrix}^T \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 14 \end{pmatrix}.
\]

Thus

\[
\begin{pmatrix} 6 & 6 & 6 \\ 6 & 27 & 14 \end{pmatrix} \rightarrow \begin{pmatrix} 6 & 6 & 7 \\ 0 & 21 & 7 \end{pmatrix}
\]

Thus \(y = \frac{1}{3} \) and \(x = \frac{7}{6} - \frac{1}{3} = \frac{5}{6} \) and these are the coordinates of the least squares solution.

5. (10 points) Find all vectors in \(P(3) \) that are orthogonal to \(p_1(x) = 1 \) and \(p_2(x) = x \) in the inner product

\[
\langle p, q \rangle = \int_{-1}^{1} f(x)g(x)dx
\]

Answer: Begin with a general vector from \(P(3) \), say \(q(x) = a_0 + a_1x + a_2x^2 + a_3x^3 \).
Then we need
\[0 = \int_{-1}^{1} (a_0 + a_1 x + a_2 x^2 + a_3 x^3) \, dx \]
\[= 2a_0 + 0a_1 + \frac{2}{3}a_2 + 0a_3 \]
\[0 = \int_{-1}^{1} x(a_0 + a_1 x + a_2 x^2 + a_3 x^3) \, dx \]
\[= 0a_0 + \frac{2}{3}a_1 + 0a_2 + \frac{2}{5}a_3 \]

We conclude that \(a_2 \) and \(a_3 \) are free variables and \(a_0 = -\frac{1}{3}a_2 \), \(a_1 = -\frac{3}{5}a_3 \). So the general orthogonal vector is
\[
q(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \\
= a_2 (x^2 - \frac{1}{3}) + a_3 (x^3 - \frac{3}{5}x)
\]

6. (10 points)

(a) An \(m \times n \) matrix \(A \) has rank \(r \). Which of the following statements is correct?
 i. \(A \) has \(r \) linearly independent columns
 ii. \(A \) has \(r \) linearly independent rows
 iii. Both i) and ii) are true
 iv. Neither i) or ii) is true
 Choice: iii

(b) If the incident matrix for a connected digraph is \(n \times n \), how many independent circuits are there in the digraph?
 i. 0
 ii. 1
 iii. more than 1
 iv. impossible to determine without further information
 Choice: ii

(c) If an \(m \times n \) matrix \(A \) has rank \(r \), then the dimension of ker \(A \) is
 i. \(r \)
 ii. \(n - r \)
 iii. \(m - r \)
 iv. \(m + n - 2r \)
 Choice: ii
(d) Here are two statements:

Statement A : If x_1 and x_2 are both solutions of $Ax = 0$,
then so is $c_1x_1 + c_1x_2$ for any real numbers c_1 and c_2

Statement B : ker A is a subspace

Which of the following options is the case:

i. Neither statement implies the other
ii. Statement A implies Statement B but B does not imply A
iii. Statement B implies Statement A but A does not imply B
iv. The two statements are equivalent

Choice: iv

(e) In the representation $x = x^* + z$ of solutions of $Ax = b$,

i. $x - x^*$ satisfies the homogeneous system
ii. x^* is not unique if ker A is non-trivial
iii. both i) and ii) are true
iv. neither i) nor ii) is true

Choice: iii