Recall: \[\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \]
or \[\lim_{x \to a} \frac{f(x) - (f(a) + f(a)(x - a))}{x - a} = 0 \]

So differentiable \(\iff \) \(L(x) \) is a good approx of \(f(x) \) near \(x = a \).

For \(f(x,y) \) we proceed in the same way:

\[f(x,y) \text{ is differentiable at } (a,b) \text{ if } \]
\[\lim_{(x,y) \to (a,b)} \frac{f(x,y) - (f(a,b) + f_x(a,b)(x - a) + f_y(a,b)(y - b))}{\sqrt{(x - a)^2 + (y - b)^2}} = 0 \]

Recall how tricky this can be!

Theorem: If \(f_x \) and \(f_y \) exist and are continuous at \((a,b)\), then \(f \) is differentiable at \((a,b)\).

Remark: Differentials

\[\Delta y = f(a+dx) - f(a) \] change in height of function
\[dy = f(a) \, dx \] change in height of tangent line

Similarly for \(\Delta z = f(x,y) \) near \((a,b)\)

\[\Delta z = f(a+dx, b+dy) - f(a,b) \] (rise in fin)
\[dz = f_x(a,b) \, dx + f_y(a,b) \, dy \] (rise in tgt plane)

differentials \(\Delta z = 0 \) at \((a,b)\) changes to \((a+dx, b+dy)\)
Recall from calc I: \(y = f(x(t)) \)
\[
\frac{dy}{dt} = f'(x(t)) \frac{dx}{dt}
\] Chain Rule

viewed in one way this comes from \(\frac{dy}{dt} = f'(x) \frac{dx}{dt} \) by dividing by \(dt \). The same idea gives us the chain rule for functions of several variables:

\[
dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy
\]

leads to

\[
z(t) = z(x(t), y(t)) \Rightarrow \frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}
\]

Ex. \(z = xy + 3xy' \) where \(x = \sin 2t \), \(y = \cosh t \)
Find \(\frac{dz}{dt} \) when \(t = 0 \) Ans: 6

Now think about \(z(s,t) = z(x(s,t), y(s,t)) \)

\[
\frac{\partial z}{\partial s} = \ldots > \frac{\partial z}{\partial t} = \ldots
\]

Ex. \(u = x^4 y + y^2 z^2 \) where \(x = rs \cos t \), \(y = rs \cos t \), \(z = rs \sin t \)
Find \(\frac{\partial u}{\partial s} \) when \(r = 2, s = 1, t = 0 \) Ans: 192