So far we have seen surfaces in 3D that are spheres or planes. Here we want to talk about 3D versions of the conic sections (ellipses, parabolas, hyperbolas) called quadrics

\[Ax^2 + By^2 + Cz^2 + J = 0 \] or \[Ax^2 + By^2 + Iz = 0 \]

(by translations and rotations and quadratic in \(x, y, z \) becomes one of these two).

Traces are the curves of intersection with plane parallel to the coordinate planes.

Cylinders. A surface consisting of all lines parallel to a given line and passing through a plane curve.

Ex \(z = x^2 \), \(y \)-orbit

\[\text{trace for } y = 0 \]

\[\text{trace for } y = 1 \]

Ex \(x^2 + y^2 = 1 \), \(z \)-orbit:

Ex \(y^2 + z^2 = 1 \), \(x \)-orbit (lines parallel to \(x \)-axis through a circle of radius 1 in \(yz \)-plane)
Ex \(x^2 + \frac{y^2}{q} + \frac{z^2}{4} = 1 \) \(\Rightarrow \) ellipsoid.

Traces for \(z = k \):
\[x^2 + \frac{y^2}{q} = 1 - \frac{k^2}{4} \] ellipse

Traces for \(x = k \):
\[\frac{y^2}{q} + \frac{z^2}{4} = 1 - k^2 \] "

Traces for \(y = k \):
\[x^2 + \frac{z^2}{4} = 1 - \frac{k^2}{q} \] "

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \]

\[\text{Ex} \quad z = 4x^2 + y^2 \]

Trace for \(z = k \) \(\Rightarrow \) \(4x^2 + y^2 = k \) ellipses

Trace for \(x = k \) \(\Rightarrow \) \(z - 4k^2 = y^2 \) parabola in \(yz \) plane

Trace for \(y = k \) \(\Rightarrow \) \(z - k^2 = 4x^2 \) \(xz \) plane

\[\text{Ex} \quad z = y^2 - x^2 \]

\[x = k \Rightarrow z + k^2 = y^2 \]

\[z = k \]

\[k = 0 \]

\[k = \pm 1 \]

\[y \]

\[k = \pm 2 \]
Now review the standard conics on pg 830 and identify features of each!

Sec 14.1

Here we begin our journey into functions of several variables. We begin with two variables x and y and consider

$$z = f(x, y)$$

Think of this as a surface in \mathbb{R}^3 (one height z for each pt (x, y) in xy plane where fx, fy make sense)

Domain: D, a set given where $f(x, y)$ is meaningful or the set of all (x, y)

Range: R, set of all z values found from $z = f(x, y)$ with (x, y) in D.

Ex: $f(x, y) = \frac{\sqrt{x+y+1}}{x-1}$ Domain?

$x \neq 1$, $x+y+1 \geq 0$

Ex Domain? Range? for $g(x, y) = \sqrt{9-x^2-y^2}$