Matrix games

A vector \(y \in \mathbb{R}^m \) is stochastic if \(y_i \geq 0 \) for every \(i \in \{1, \ldots, m\} \) and \(\sum_{i=1}^{m} y_i = 1 \). Throughout, assume \(x, y \) are stochastic vectors in \(\mathbb{R}^n \) and \(\mathbb{R}^m \), respectively. Let \(A = \{a_{ij}\} \) be an \(m \times n \) payoff matrix for a game with zero sum. If the first player chooses his/her strategy \(i \) with probability \(y_i \) for every \(i = 1, \ldots, m \), and the second player chooses his/her strategy \(j \) with probability \(x_j \) for all \(j = 1, \ldots, n \) then the expectation of the profit of the first player will be

\[
F(A, y, x) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} y_i x_j = y^T Ax.
\]

Thus the first player can provide the expected profit \(v_1(A) = \max_y \min_x F(A, y, x) \) and the second player’s expected loss can be made at most \(v_2(A) = \min_x \max_y F(A, y, x) \). It is not hard to see that \(v_1(A) \leq v_2(A) \) for every payoff matrix \(A \).

We need the following lemma.

Lemma. For any payoff matrix \(A \) and stochastic \(y \in \mathbb{R}^m \), \(\min_x y^T Ax = \min_j \sum_{i=1}^{m} y_i a_{i,j} \). And for any stochastic \(x \in \mathbb{R}^n \), \(\max_y y^T Ax = \max_i \sum_{j=1}^{n} a_{i,j} x_j \).

Proof. Let \(t = \min_j \sum_{i=1}^{m} y_i a_{i,j} \). We have that

\[
y^T Ax = \sum_{j=1}^{n} \sum_{i=1}^{m} y_i a_{i,j} x_j = \sum_{j=1}^{n} x_j \sum_{i=1}^{m} y_i a_{i,j} \geq \sum_{j=1}^{n} x_j t = t,
\]

so \(\min_x y^T Ax \geq t \). Furthermore, for any \(j \in \{1, \ldots, n\} \),

\[
\min_x y^T Ax \leq y^T A e_j = \sum_{i=1}^{m} y_i a_{i,j},
\]

where \(e_j \in \mathbb{R}^n \) is the \(j \)th standard basis vector. Hence, \(\min_x y^T Ax \leq \min_j y^T A e_j = t \) and the conclusion follows.

The proof of the second sentence is similar. \(\square \)

Theorem. For every payoff matrix \(A \), \(v_1(A) = v_2(A) \).

PROOF. Consider the following LP1:

\[
\begin{align*}
\text{Find} & \quad \max v_1 \\
such that & \quad \begin{array}{cccccc}
 v_1 & -a_{11}y_1 & -a_{12}y_2 & \ldots & -a_{1m}y_m & \leq & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \ldots & \ldots \\
 v_1 & -a_{n1}y_1 & -a_{n2}y_2 & \ldots & -a_{nm}y_m & \leq & 0 \\
y_1 & +y_2 & \ldots & +y_m & = & 1 \\
 v_1 & \text{unconstrained} \\
y_i & \geq & 0 & \forall i
\end{array}
\end{align*}
\]

Using the lemma, one can check that the maximum possible \(v_1 \) in this LP is exactly \(v_1(A) \).
Similarly, $v_2(A)$ is the solution of the following LP2:

Find $\min v_2$

\[
\begin{bmatrix}
 x_1 & x_2 & \ldots & x_n \\
 -a_{11}x_1 & -a_{12}x_2 & \ldots & -a_{1n}x_n + v_2 & \geq 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
 -a_{m1}x_1 & -a_{m2}x_2 & \ldots & -a_{mn}x_n + v_2 & \geq 0 \\
 x_j & \geq 0 & \forall j \\
v_2 & \text{unconstrained}
\end{bmatrix}
\]

such that

Both these problems have feasible solutions (any pure strategies would do). Moreover, they are dual. This proves the theorem.