Test 3 topics

Only the E14 students need to know the proofs of the theorem marked with “(with proof)”. Students in both E13 and E14 sections are required to know and understand the statement of the theorems listed.

Here are the selected topics that will make up the majority of the exam.

(1) Floyd-Warshall
(2) Primal dual for shortest path (Section 5.4)
(3) Theorem 13.3 (with proof)
(4) Complementary slackness (section 3.4) (with proof)
(5) Dual simplex
(6) Revised simplex
(7) Lexicographic simplex
(8) Bland’s rule
(9) 2-phase simplex and 2-phase revised simplex
(10) Farkas Lemma (Theorem 3.5)
(11) Matrix games, pure strategy, mixed strategy, minimax theorem (with proof), stochastic vertex, Alice, Bob, optimal strategy, value of game, solving a matrix game using linear programming (see handout on website)

These are older topics that might appear on the exam.

(1) A circulation is the sum of flows on cycles, and a \((s,t)\)-flow is the sum of flows on \((s,t)\)-path, cycles and \((t,s)\)-paths
(2) revised simplex method and two phase revised simplex (section 4.1)
(3) Max-flow via revised simplex (Section 4.3)
(4) Value of flow \(f\) : \(|f|\)
(5) Theorem 5.1 - with proof
(6) Theorem 5.3 - with proof
(7) Ford-Fulkerson algorithm for max-flow
(8) definition of an \(s-t\)-cut (section 6.1)
(9) Theorem 6.1 - with proof
(10) max-flow = min-cut
(11) \(f\)-augmenting \((s,t)\)-path
(12) Dual simplex method (Section 3.6)
(13) Using the final tableau to solve a slightly modified LP.
(14) Farkas Lemma (Theorem 3.5)
(15) Matrix games, pure strategy, mixed strategy, minimax theorem (with proof), stochastic vertex, Alice, Bob, optimal strategy, value of game, solving a matrix game using linear programming (see handout on website)
(16) Integer programming and satisfiability
(17) Theorem 13.3 (with proof)
(18) The incidence matrix of bipartite graphs and directed graphs are TUM (Theorem 13.3 Corollary)
(19) (Koenig’s theorem) Min vertex cover = max matching in bipartite graphs - via integer programming (with proof)
(20) Relaxation of a integer linear program
(21) The basic feasible solutions the LP in standard or canonical form are integer if the matrix is totally unimodular
(22) Totally unimodular matrices - definition
(23) Definition: feasible solution
(24) Definition: object function
(25) Definition: optimal solution, optimum
(26) Definition: infeasible LP
Definition: unbounded LP
Definition: basis
Definition: basic feasible solution
Definition: degenerate basic feasible solution
Definition: feasible basis
Definition: Standard/Canonical/General form and how to transform to each form.
Definition: lex positive, lex negative, lex zero

Solving a 2d LP graphically
Prop 1 - A feasible basis B corresponds to exactly one basic feasible solution x and x is defined by $x_B = A_B^{-1}b$ and $x_j = 0$ for all j not in B.
Prop 2 - Let x be a feasible solution to an LP in standard form. x is a basic feasible solution if and only if the columns of A_k are linearly independent where $K = \{ j \in [n] : x_j > 0 \}$.

Fundamental theorem:
Suppose LP is a linear program in standard form.
- If the LP has a feasible solution, then it has a basic feasible solution.
- If the LP has no optimal solution, then the LP is infeasible or unbounded.
- If the LP has an optimal solution, then it has a optimal basic feasible solution.

Simplex method and two phase simplex method (see examples on website)
Lexicographic simplex - know the row selection rule pivot rules
Bland’s rule - know the column and row selection rules and how to apply them
Fact that lexicographic simplex and Bland’s rule do not cycle
Algebraic Theorem about pre-multiplication matrix and updated Tableau \tilde{T} (with proof) (see hand-out on website).
Weak Duality - If x is feasible for P and π is feasible for its dual D, then $\pi^Tb \leq c^Tx$.
Finding the dual of a linear program in general form (Definition 3.1)
Strong Duality (Theorem 3.1) (with proof - can assume P in standard form)
Dual of the dual is primal (Theorem 3.2) (with proof)
Theorem 3.3 in book
Complementary slackness (section 3.4) (with proof)