The Ford—Fulkerson Algorithm
Math 482, Lecture 26

Misha Lavrov

April 6, 2020

When augmenting paths fail
®00

A summary of the last lecture

In the previous lecture, we found a high-value flow in a network by
starting with the zero flow and repeating the following procedure:

Q Find an augmenting path.

Q Use it to augment the flow as much as possible.

/@b 0/10 °

0/10 0/4 0/12

o4 Fo

0/10 0/4 0/8

RGEIEE

When augmenting paths fail
®00

A summary of the last lecture

In the previous lecture, we found a high-value flow in a network by
starting with the zero flow and repeating the following procedure:

Q Find an augmenting path.
Q Use it to augment the flow as much as possible.
10/10 °
/V
10/10 0/4 10/12

o} PO

0/10 0/4 0/8

RGEIEE

When augmenting paths fail
®00

A summary of the last lecture

In the previous lecture, we found a high-value flow in a network by
starting with the zero flow and repeating the following procedure:

Q Find an augmenting path.
Q Use it to augment the flow as much as possible.

/@b 10/10 °

10/10 0/4 10/12

o% PO

4/10 0/4 4/8

NGRSO

When augmenting paths fail
®00

A summary of the last lecture

In the previous lecture, we found a high-value flow in a network by
starting with the zero flow and repeating the following procedure:

Q Find an augmenting path.
Q Use it to augment the flow as much as possible.
10/10 @
/V
10/10 0/4 12/12

o% PO

6/10 2/4 4/8

(:)/—4/4

When augmenting paths fail
®00

A summary of the last lecture

In the previous lecture, we found a high-value flow in a network by
starting with the zero flow and repeating the following procedure:

Q Find an augmenting path.
Q Use it to augment the flow as much as possible.

o O

10/10 2/4 12/12

o% PO

8/10 4/4 6/8

(:)/—4/4

When augmenting paths fail
®00

In the previous lecture, we found a high-value flow in a network by
starting with the zero flow and repeating the following procedure:

Q Find an augmenting path.
Q Use it to augment the flow as much as possible.

oy O

10/10 2/4 12/12

o4 PO

8/10 4/4 6/8

:)/74/4

Eventually, there are no more augmenting paths.

When augmenting paths fail

oeo

The final residual graph

We can see this in the residual graph for the final flow obtained:

38
2 — AT
10 12

2 4

When augmenting paths fail
oeo

The final residual graph

We can see this in the residual graph for the final flow obtained:

38
2 — AT
10 12

2 4

From s, we can only get to c. From ¢, we can’t go anywhere new
and can only return to s. There is no s, t-path in the residual
graph.

When augmenting paths fail
ooe

The residual graph theorem

Suppose that we have a network (N, A) and a feasible flow x such
that there is no s, t-path in the residual graph. Then:

When augmenting paths fail
ooe

The residual graph theorem

Theorem

Suppose that we have a network (N, A) and a feasible flow x such
that there is no s, t-path in the residual graph. Then:

Let S be the set of all nodes reachable from s in the residual
graph. Let T be the set of all other nodes. The cut (S, T) has the
same capacity as the value of x.

When augmenting paths fail
ooe

The residual graph theorem

Theorem

Suppose that we have a network (N, A) and a feasible flow x such
that there is no s, t-path in the residual graph. Then:

Let S be the set of all nodes reachable from s in the residual
graph. Let T be the set of all other nodes. The cut (S, T) has the
same capacity as the value of x.

In particular, x is a maximum flow and (S, T) is a minimum cut.

4

When augmenting paths fail
ooe

The residual graph theorem

Theorem

Suppose that we have a network (N, A) and a feasible flow x such
that there is no s, t-path in the residual graph. Then:

Let S be the set of all nodes reachable from s in the residual
graph. Let T be the set of all other nodes. The cut (S, T) has the
same capacity as the value of x.

In particular, x is a maximum flow and (S, T) is a minimum cut.

4

In our example, we take S = {s,c} and T ={a,b,d,t}. The
capacity of this cut is cs5 + Cep + Ceg = 10 + 4 + 4 = 18, same as
the value of x.

Proving the residual graph theorem
®00

Applying the definition

In the cut (S, T) defined in the residual graph theorem, the
residual graph has no arcs from S to T.

Proving the residual graph theorem
®00

Applying the definition

In the cut (S, T) defined in the residual graph theorem, the
residual graph has no arcs from S to 7. What does that mean?

Proving the residual graph theorem
®00

In the cut (S, T) defined in the residual graph theorem, the
residual graph has no arcs from S to 7. What does that mean?

Recall:

@ Whenever x; < cj for an arc (i,) € A, the residual graph has
an arc i — j.

o Whenever x;; > 0 for an arc (i,j) € A, the residual graph has
anarcj —i.

Proving the residual graph theorem
®00

In the cut (S, T) defined in the residual graph theorem, the
residual graph has no arcs from S to 7. What does that mean?

Recall:

@ Whenever x; < cj for an arc (i,) € A, the residual graph has
an arc i — j.

o Whenever x;; > 0 for an arc (i,j) € A, the residual graph has
anarcj —i.

Therefore:

o For every arc (i,j) with i€ Sand j € T, xj = cj.

Proving the residual graph theorem
®00

In the cut (S, T) defined in the residual graph theorem, the
residual graph has no arcs from S to 7. What does that mean?

Recall:

@ Whenever x; < cj for an arc (i,) € A, the residual graph has
an arc i — j.

o Whenever x;; > 0 for an arc (i,j) € A, the residual graph has
anarcj —i.

Therefore:
o For every arc (i,j) with i€ Sand j € T, xj = cj.

o For every arc (i,j) with i€ T and j € S, x;j = 0.

Proving the residual graph theorem

oeo

Another equation for the value

For any cut (S, T), v(x) = ZZX,'J' — ZZX,'J'.

i€S JET ieT je$s
(We proved this at the end of Lecture 23.)

Proving the residual graph theorem
oeo

Another equation for the value

For any cut (S, T), v(x) = ZZX,'J' — ZZX,'J'.

i€S JET ieT je$s
(We proved this at the end of Lecture 23.)

Example: S = {s,a, b} and T = {c,d, t}.

/v% 8/10

10/10 2/4 12/12

8/10 4/4 6/8

QOSSO

Proving the residual graph theorem
oeo

Another equation for the value

For any cut (S, T), v(x) = ZZX,'J' — ZZX,'J'.

i€S JET ieT je$s
(We proved this at the end of Lecture 23.)

Example: S = {s,a, b} and T = {c,d, t}.

/v% 8/10

10/10 2/4 12/12

8/10 4/4 6/8

QOSSO

18 = v(X) = Xsc + Xag + Xpt — Xep =8+ 2+ 12 — 4.

Proving the residual graph theorem
ooe

Putting these together

If (S, T) is the cut from the residual graph, we still have

v(x) :ZZXU—ZZXU.

i€S jeT ieT jeS

Proving the residual graph theorem
ooe

Putting these together

If (S, T) is the cut from the residual graph, we still have
TOR B D 3 o
i€S jeT i€T jes

But when i € S,j € T, we know that xjj = ¢j;; when i € T and
J €S, we know that xj; = 0.

Proving the residual graph theorem
ooe

Putting these together

If (S, T) is the cut from the residual graph, we still have
TOR B D 3 o
i€S jeT i€T jes

But when i € S,j € T, we know that xjj = ¢j;; when i € T and
J €S, we know that x;; = 0. Therefore

0= -3 30

i€S JET ieT jes

Proving the residual graph theorem
ooe

If (S, T) is the cut from the residual graph, we still have
-5 Y Y
i€eS jeT ieT jeS

But when i € S,j € T, we know that xj; = ¢j;; when i € T and
J €S, we know that xj; = 0. Therefore

V(X)ZZZCU_ZZOZC(S’ 7).

i€S JET ieT jes

This proves the residual graph theorem.

Max-flow algorithms
©000

The Ford—Fulkerson algorithm

This gives us a kind of algorithm for maximum flow in a network
(N, A), called the Ford—Fulkerson algorithm.

Max-flow algorithms
©000

The Ford—Fulkerson algorithm

This gives us a kind of algorithm for maximum flow in a network
(N, A), called the Ford—Fulkerson algorithm.

@ Begin with the zero flow: x;; = 0 for all (i,) € A.

Max-flow algorithms
®000

This gives us a kind of algorithm for maximum flow in a network
(N, A), called the Ford—Fulkerson algorithm.

@ Begin with the zero flow: x;; = 0 for all (i,) € A.
Q Repeat as long as it's possible:

o Find an augmenting path by looking for an s, t-path in the
residual graph.

o Use it to augment the flow x as much as possible.

Max-flow algorithms
®000

This gives us a kind of algorithm for maximum flow in a network
(N, A), called the Ford—Fulkerson algorithm.

@ Begin with the zero flow: x;; = 0 for all (i,) € A.
Q Repeat as long as it's possible:

o Find an augmenting path by looking for an s, t-path in the
residual graph.

o Use it to augment the flow x as much as possible.

O At the end, x is the max flow, and we can prove it: the
theorem gives a cut (S, T) with v(x) = ¢(S, T).

Max-flow algorithms
®000

This gives us a kind of algorithm for maximum flow in a network
(N, A), called the Ford—Fulkerson algorithm.

@ Begin with the zero flow: x;; = 0 for all (i,) € A.
Q Repeat as long as it's possible:

o Find an augmenting path by looking for an s, t-path in the
residual graph.

o Use it to augment the flow x as much as possible.

O At the end, x is the max flow, and we can prove it: the
theorem gives a cut (S, T) with v(x) = ¢(S, T).

One lingering doubt. ..

Max-flow algorithms
®000

This gives us a kind of algorithm for maximum flow in a network
(N, A), called the Ford—Fulkerson algorithm.

@ Begin with the zero flow: x;; = 0 for all (i,) € A.
Q Repeat as long as it's possible:

o Find an augmenting path by looking for an s, t-path in the
residual graph.

o Use it to augment the flow x as much as possible.

O At the end, x is the max flow, and we can prove it: the
theorem gives a cut (S, T) with v(x) = ¢(S, T).

One lingering doubt. .. how do we know that the algorithm will
eventually stop?

Max-flow algorithms
0e00

Bounds on stopping time

We can prove one (really bad) upper bound!

Max-flow algorithms
0e00

Bounds on stopping time

We can prove one (really bad) upper bound!

Suppose all capacities are integers. Then the value of x goes up by

at least 1 at each step. Since v(x) <} (s yea Csj, the algorithm
must eventually stop.

Max-flow algorithms
ce00

We can prove one (really bad) upper bound!

Suppose all capacities are integers. Then the value of x goes up by
at least 1 at each step. Since v(x) <} (s yea Csj, the algorithm
must eventually stop.

This can actually happen, if we're really bad at choosing

augmenting paths:
0/1000 /@\ 0/1000

0/1
0/1000 v 0/1000

Max-flow algorithms
ce00

We can prove one (really bad) upper bound!

Suppose all capacities are integers. Then the value of x goes up by
at least 1 at each step. Since v(x) <} (s yea Csj, the algorithm
must eventually stop.

This can actually happen, if we're really bad at choosing

augmenting paths:
v
1/1000 0/1000

1/1
0,/1000 ¥ 1/1000

Max-flow algorithms
ce00

We can prove one (really bad) upper bound!

Suppose all capacities are integers. Then the value of x goes up by
at least 1 at each step. Since v(x) <} (s yea Csj, the algorithm
must eventually stop.

This can actually happen, if we're really bad at choosing

augmenting paths:
1/1000 /@\ 1/1000

0/1 e

1/1000 v 1/1000
TSa

Max-flow algorithms
ce00

We can prove one (really bad) upper bound!

Suppose all capacities are integers. Then the value of x goes up by
at least 1 at each step. Since v(x) <} (s yea Csj, the algorithm
must eventually stop.

This can actually happen, if we're really bad at choosing

augmenting paths:
v
2/1000 1/1000

1/1
1/1000 v 2/1000

Max-flow algorithms
ce00

We can prove one (really bad) upper bound!

Suppose all capacities are integers. Then the value of x goes up by
at least 1 at each step. Since v(x) <} (s yea Csj, the algorithm
must eventually stop.

This can actually happen, if we're really bad at choosing

augmenting paths:
2/1000 /@\ 2/1000

0/1 e

2/1000 v 2/1000
TSa

Max-flow algorithms
coeo

In general, if we pick our augmenting paths really badly, there are
no guarantees. Example (see lecture notes for details):

0/10
0/10 XC@\

0/10 0/10
0/10
0/1
0/10
One irrational capacity: cge = ¢ = 1+\[~ 1.618.

The max value of 21 can be reached in 3 steps: augment along
s—>a—t, s—d—t ands— b— c—t. Butit's possible to
do infinitely many steps and be stuck at a value below 5.

Max-flow algorithms
ocooe

Suppose our network has n nodes and m arcs. (Note: m < n?))

o (Edmonds—Karp, 1972) Choose the shortest augmenting
path at every step. Then at most nm augmenting steps are
necessary: O(nm?) running time.

Max-flow algorithms
ocooe

Suppose our network has n nodes and m arcs. (Note: m < n?))

o (Edmonds—Karp, 1972) Choose the shortest augmenting
path at every step. Then at most nm augmenting steps are
necessary: O(nm?) running time.

o (Dinic, 1970) With further cleverness: O(n?m) running time.

Max-flow algorithms
ocooe

Suppose our network has n nodes and m arcs. (Note: m < n?))

o (Edmonds—Karp, 1972) Choose the shortest augmenting
path at every step. Then at most nm augmenting steps are
necessary: O(nm?) running time.

o (Dinic, 1970) With further cleverness: O(n?m) running time.

o (Goldberg—Tarjan, 1986) Push-relabel algorithm: also
O(n%*m), but can be done more carefully in O(n%) or
O(nmlog %2) time.

(See last semester's notes if you're curious.)

Max-flow algorithms
ocooe

Suppose our network has n nodes and m arcs. (Note: m < n?))

o (Edmonds—Karp, 1972) Choose the shortest augmenting
path at every step. Then at most nm augmenting steps are
necessary: O(nm?) running time.

o (Dinic, 1970) With further cleverness: O(n?m) running time.

o (Goldberg—Tarjan, 1986) Push-relabel algorithm: also
O(n%*m), but can be done more carefully in O(n%) or
O(nmlog %2) time.

(See last semester's notes if you're curious.)

o Modern state of the art: O(nm) time, by choosing between
two different algorithms when m is large or small.

	When augmenting paths fail
	Proving the residual graph theorem
	Max-flow algorithms

