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When augmenting paths fail
®00

A summary of the last lecture

In the previous lecture, we found a high-value flow in a network by
starting with the zero flow and repeating the following procedure:

Q Find an augmenting path.

Q Use it to augment the flow as much as possible.
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In the previous lecture, we found a high-value flow in a network by
starting with the zero flow and repeating the following procedure:

Q Find an augmenting path.
Q Use it to augment the flow as much as possible.
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Eventually, there are no more augmenting paths.
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The final residual graph

We can see this in the residual graph for the final flow obtained:
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The final residual graph

We can see this in the residual graph for the final flow obtained:
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From s, we can only get to c. From ¢, we can’t go anywhere new
and can only return to s. There is no s, t-path in the residual
graph.
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The residual graph theorem

Suppose that we have a network (N, A) and a feasible flow x such
that there is no s, t-path in the residual graph. Then:
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Suppose that we have a network (N, A) and a feasible flow x such
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Let S be the set of all nodes reachable from s in the residual
graph. Let T be the set of all other nodes. The cut (S, T) has the
same capacity as the value of x.
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In our example, we take S = {s,c} and T ={a,b,d,t}. The
capacity of this cut is cs5 + Cep + Ceg = 10 + 4 + 4 = 18, same as
the value of x.
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Applying the definition

In the cut (S, T) defined in the residual graph theorem, the
residual graph has no arcs from S to T.
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In the cut (S, T) defined in the residual graph theorem, the
residual graph has no arcs from S to 7. What does that mean?

Recall:

@ Whenever x; < cj for an arc (i, ) € A, the residual graph has
an arc i — j.

o Whenever x;; > 0 for an arc (i,j) € A, the residual graph has
anarcj —i.

Therefore:
o For every arc (i,j) with i€ Sand j € T, xj = cj.

o For every arc (i,j) with i€ T and j € S, x;j = 0.
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Another equation for the value

For any cut (S, T), v(x) = ZZX,'J' — ZZX,'J'.

i€S JET ieT je$s
(We proved this at the end of Lecture 23.)
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Another equation for the value

For any cut (S, T), v(x) = ZZX,'J' — ZZX,'J'.

i€S JET ieT je$s
(We proved this at the end of Lecture 23.)
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18 = v(X) = Xsc + Xag + Xpt — Xep =8+ 2+ 12 — 4.
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Putting these together

If (S, T) is the cut from the residual graph, we still have

v(x) :ZZXU—ZZXU.
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Putting these together

If (S, T) is the cut from the residual graph, we still have
TOR B D 3 o
i€S jeT i€T jes

But when i € S,j € T, we know that xjj = ¢j;; when i € T and
J €S, we know that x;; = 0. Therefore
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If (S, T) is the cut from the residual graph, we still have
-5 Y Y
i€eS jeT ieT jeS

But when i € S,j € T, we know that xj; = ¢j;; when i € T and
J €S, we know that xj; = 0. Therefore

V(X)ZZZCU_ZZOZC(S’ 7).

i€S JET ieT jes

This proves the residual graph theorem.
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This gives us a kind of algorithm for maximum flow in a network
(N, A), called the Ford—Fulkerson algorithm.
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o Find an augmenting path by looking for an s, t-path in the
residual graph.

o Use it to augment the flow x as much as possible.
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This gives us a kind of algorithm for maximum flow in a network
(N, A), called the Ford—Fulkerson algorithm.

@ Begin with the zero flow: x;; = 0 for all (i, ) € A.
Q Repeat as long as it's possible:

o Find an augmenting path by looking for an s, t-path in the
residual graph.

o Use it to augment the flow x as much as possible.

O At the end, x is the max flow, and we can prove it: the
theorem gives a cut (S, T) with v(x) = ¢(S, T).

One lingering doubt. .. how do we know that the algorithm will
eventually stop?
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augmenting paths:
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We can prove one (really bad) upper bound!

Suppose all capacities are integers. Then the value of x goes up by
at least 1 at each step. Since v(x) <} (s yea Csj, the algorithm
must eventually stop.

This can actually happen, if we're really bad at choosing
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In general, if we pick our augmenting paths really badly, there are
no guarantees. Example (see lecture notes for details):

0/10
0/10 XC@\

0/10 0/10
0/10
0/1
0/10
One irrational capacity: cge = ¢ = 1+\[ ~ 1.618.

The max value of 21 can be reached in 3 steps: augment along
s—>a—t, s—d—t ands— b— c—t. Butit's possible to
do infinitely many steps and be stuck at a value below 5.
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Suppose our network has n nodes and m arcs. (Note: m < n?))

o (Edmonds—Karp, 1972) Choose the shortest augmenting
path at every step. Then at most nm augmenting steps are
necessary: O(nm?) running time.
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Suppose our network has n nodes and m arcs. (Note: m < n?))

o (Edmonds—Karp, 1972) Choose the shortest augmenting
path at every step. Then at most nm augmenting steps are
necessary: O(nm?) running time.

o (Dinic, 1970) With further cleverness: O(n?m) running time.

o (Goldberg—Tarjan, 1986) Push-relabel algorithm: also
O(n%*m), but can be done more carefully in O(n%) or
O(nmlog %2) time.

(See last semester's notes if you're curious.)

o Modern state of the art: O(nm) time, by choosing between
two different algorithms when m is large or small.
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