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1 Optimization and coercive functions

1.1 Review

As we’ve seen before in this class, closed and bounded subsets of Rn are useful in minimization
because of the following two results:

Theorem 1.1 (Extreme value theorem). If D ⊆ Rn is a closed and bounded set, and f : D → R
is a continuous function, then f has a global minimizer on D.

Theorem 1.2 (Bolzano–Weierstrass theorem). If D ⊆ Rn is a closed and bounded set, and
x(1),x(2), . . . is a sequence of elements of D, then there is a subsequence x(i1),x(i2), . . . which
converges to some x∗ ∈ D.

We say that a continuous function f : Rn → R is coercive if, for all c ∈ R, the sublevel set
{x ∈ Rn : f(x) ≤ c} is bounded. (This set is always guaranteed to be closed.) This definition is
motivated by letting us apply the results above, and in particular, we have the following corollary
of the extreme value theorem:

Corollary 1.1. If f is coercive, then f has a global minimizer on Rn.

Proof. Pick any point y ∈ Rn. Let S = {x ∈ Rn : f(x) ≤ f(y)}.

S is closed (by an argument involving the continuity of f), and by the definition of coercive, S is
also bounded. By the extreme value theorem, f has a global minimizer x∗ on S.

This x∗ is actually a global minimizer on Rn: if x ∈ S, then by definition of the global minimizer,
f(x∗) ≤ f(x), but if x /∈ S, then f(x∗) ≤ f(y) < f(x), so we still have f(x∗) ≤ f(x).

1.2 Some more results about coercive functions

We already saw one way to get examples of coercive functions earlier in this course. It’s from
dealing with one-dimensional functions:

1. For functions f : R→ R, f is coercive if limx→∞ f(x) = limx→−∞ f(x) = +∞.

2. If f1, f2, . . . , fn are coercive functions R → R, then the function f(x) = f1(x1) + f2(x2) +
· · ·+ fn(xn) is a coercive function Rn → R.

So, for example, f(x, y) = (x2 − 100x) + (y4 + y + 1) is a coercive function.

Another nice property is easy to show from the definition.
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Lemma 1.1. If f : Rn → R is coercive, and g : Rn → R is continuous and bounded below, then
f + g is coercive.

Proof. Let L ∈ R be a lower bound on g: some number such that g(x) ≤ L for all x ∈ Rn.

Then the sublevel set S = {x ∈ Rn : f(x) + g(x) ≤ c} is contained inside the set S′ = {x ∈ Rn :
f(x) + L ≤ c}.

(If x ∈ S, then f(x) + g(x) ≤ c, and f(x) + L ≤ f(x) + g(x) no matter what x is, so f(x) + L ≤ c
as well, proving that x ∈ S′.)

But S′ is just {x ∈ Rn : f(x) ≤ c− L}, which is a sublevel set of f . So S′ is bounded because f is
coercive; therefore S is bounded.

Some special cases of this lemma:

• Since coercive functions have global minimizers, they are always bounded below, so in par-
ticular, the sum of two coercive functions is coercive.

• If f is coercive and h is a continuous function such that f(x) ≤ h(x) for all x, then h = f +g,
where g = f − h, and g is bounded below (by 0), so h is also coercive.

This is a simple property, but we’ll later see some clever ways to apply it.

2 Coercive functions and the penalty method

In the penalty method, we convert the problem

(P )

{
minimize

x∈Rn
f(x)

subject to g(x) ≤ 0

into an unconstrained optimization problem: minimizing the modified objective function

Fk(x) = f(x) + k
[
(g+1 (x))2 + (g+2 (x))2 + · · ·+ (g+m(x))2

]
over all x ∈ Rn, where k is some large number.

In theory, as k → ∞, the global minimizer of Fk should approach an optimal solution of P . We
showed last time that if that convergence happens, then the point we converge to is an optimal
solution (under some hypotheses which are all satisfied in the theorem below).

Theorem 2.1. Suppose that P is feasible (there exists so y ∈ Rn satisfying g(y) ≤ 0), g1, g2, . . . , gm
are continuous, and f is coercive.

Then there is some sequence k1, k2, k3, . . . of real numbers such that limi→∞ ki = ∞, the global
minimizers x∗(ki) all exist, and as i→∞, the points x∗(ki) converge to some x∗ ∈ Rn.

(In which case, we already know that x∗ is an optimal solution of P .)
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Proof. First, we show that x∗(k) exists for all k > 0. For all k > 0, the penalty term is a nonnegative
continuous function of x. So Fk(x) is a sum of a coercive function and a function that’s bounded
below; therefore Fk(x) is a coercive function, and has a global minimizer.

Let y be a point satisfying g(y) ≤ 0. Then all the global minimizers x∗(k) are contained in the
sublevel set S = {x : f(x) ≤ f(y)}, because points outside S will have a value of Fk bigger than y
does.

Because f is continuous, S is closed; because f is coercive, S is bounded. So the sequence of x∗(k)
for k = 1, 2, 3, . . . has a convergent subsequence by the Bolzano–Weierstrass theorem.

By the way, the reason that we need to invoke Bolzano–Weierstrass here is the choice problem: we
can’t guarantee that x∗(k) converges as k → ∞, which would be the expected behavior, because
maybe there are multiple global minimizers to choose from for each k, and by picking a specific one
to be x∗(k), we are making bad, non-convergent choices.

3 When are polynomials coercive?

The more we know about coercive functions, the more useful results about them become. So here
are some conditions to help us classify polynomials as coercive.

3.1 Quadratic forms

This is a cute result that’s also an example of the extreme value theorem in action.

Theorem 3.1. If A is an n× n positive definite matrix, then the quadratic form f(x) = xTAx is
coercive.

Proof. Let S be the set {x ∈ Rn : ‖x‖ = 1}. S is closed and bounded, so f(x) has a global
minimizer x∗ on S. Let α = f(x∗).

Fun fact: actually α is the smallest eigenvalue of A. But we don’t need to know that. All we need
to know is that α = x∗TAx > 0, because A is positive definite, and that for all x with ‖x‖ = 1,
f(x) ≥ α.

Now take an arbitrary x ∈ Rn, x 6= 0. We have

f(x) = xTAx =

(
x

‖x‖

)T

A

(
x

‖x‖

)
· ‖x‖2 ≥ α · ‖x‖2.

We can show that α‖x‖2 is a coercive function, because the sublevel set {x ∈ Rn : α‖x‖2 ≤ c} is
the disk around 0 of radius

√
c
α , which is bounded.

Since f(x) ≥ α‖x‖2 for all x (including 0, because both functions are 0 there), we know that f is
a coercive function as well.

In fact, this condition goes both ways: if A is a symmetric matrix, then xTAx is only coercive when
A is positive definite. If not, then we can find a nonzero y for which yTAy ≤ 0; for any scalar t,
we’ll have (ty)TA(ty) ≤ 0, so the sublevel set {x : xTAx} will contain an entire unbounded line
{ty : t ∈ R}.
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3.2 Higher-degree polynomials

For functions of one variable, things are relatively straightforward. The leading term is the one that
will affect the behavior as x→ ±∞. If the leading term has odd degree, then the polynomial will be
positive in one direction and negative in the other; for example, a cubic polynomial ax3+bx2+cx+d
can never be coercive. If the leading term has even degree, then the polynomial is coercive if and
only if the coefficient on the leading term is positive.

We’d like to apply the same logic to polynomials in several variables. For example, we want to say
that if f(x, y) = x4 + y4 + xy, the xy term is dominated by the x4 and y4 terms, so their behavior
will determine the “coerciveness” of f . But it’s not obvious how to tell when this actually works,
and when it doesn’t.

Here is a test; it’s stated for polynomials in 3 variables, but the idea generalizes to any number. (I
just didn’t want to write a mess of indices.)

Theorem 3.2. A polynomial f(x, y, z) is coercive if both of the following hold:

1. It contains xA, yB, zC terms with positive coefficients, where A,B,C are some even integers.

2. For every other term xaybzc (with any coefficient) that could potentially be negative, we have
a
A + b

B + c
C < 1.

Proof. If a
A + b

B + c
C < 1, then we can choose positive real numbers A′ < A, B′ < B, and C ′ < C

such that a
A′ + b

B′ + c
C′ = 1.

Now apply the AM-GM inequality:
a

A′
xA

′
+

b

B′
yB

′
+

c

C ′
zC

′ ≥ xaybzc.

This holds only for x, y, z ≥ 0, but we can extend it to all x, y, z by replacing them with |x|, |y|, |z|
on the left-hand side. We really want the negation of this, though:

− a

A′
|x|A′ − b

B′
|y|B′ − c

C ′
|z|C′ ≤ −|xaybzc| ≤ xaybzc.

So we can replace the xaybzc term with |x|A′
, |y|B′

, and |z|C′
terms (with negative coefficients,

but we don’t care about coefficients here). This only makes the function smaller. Therefore, if the
resulting function is coercive, so was the original.

After we do replace all such mixed terms (and drop any mixed terms that are always nonnegative,
such as x2y2z2), we have a sum of functions of x, y, and z. These are all coercive and therefore
so is their sum. For example, the function of x has an xA term, and some lower-order terms with
|x|A′

for some A′ < A, so xA (which is coercive) determines its behavior.

This condition is sufficient, but not necessary. If we allow terms xaybzc with a
A + b

B + c
C = 1,

sometimes the function we get is still coercive. But then, the coefficients start to matter: for
example, by the theorem about quadratic forms, x2 + xy + y2 is coercive but x2 + 3xy + y2 is not.
This can get tricky.
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