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1 The absolute value penalty function

In this chapter we also deal with solving constrained optimization problems of the form

(P )

{
minimize

x∈Rn
f(x)

subject to g(x) ≤ 0

but the theory of the penalty method is much less elaborate.

As an easy-to-think-about example, we’ll take a 1-dimensional problem: to minimize x2, subject
to the constraint x ≥ 1 (that is, 1− x ≤ 0).

The basic premise is this: we modify the objective function so that, whenever a constraint is
violated, we pay a penalty for it. If the penalty is harsh enough, then the unconstrained minimum
of the modified function will satisfy all the constraints anyway. At least, that’s the hope.

For our first attempt at this, given a function g(x), define

g+(x) = max{0, g(x)} =

{
0 if g(x) ≤ 0,

g(x) if g(x) ≥ 0.

Instead of solving the constrained minimization problem P , we solve the unconstrained problem of
minimizing

Fk(x) = f(x) + k ·
[
g+1 (x) + g+2 (x) + · · ·+ g+m(x)

]
,

where k is some very large number. In the example, this gives us the following curves (k = 0 in
green, k = 1 in orange, k = 3 in purple):

The minimum of x2 + k(1− x)+ is achieved at the desired point 1, provided k ≥ 2.

1This document comes from the Math 484 course webpage: https://faculty.math.illinois.edu/~mlavrov/

courses/484-spring-2019.html

1

https://faculty.math.illinois.edu/~mlavrov/courses/484-spring-2019.html
https://faculty.math.illinois.edu/~mlavrov/courses/484-spring-2019.html


So far, so good. But there’s one problem with this approach. How do we minimize an unconstrained
function? We set the derivative equal to 0. If Fk(x) = x2 + k(1− x)+, then

F ′
k(x) =


2x x > 1,

2x− k x < 1,

undefined x = 1.

The first case is 0 when x = 0, which never satisfies x > 1. The second case is 0 when x = k
2 , which

satisfies x < 1 only for small k. The third case is undefined, so we have to check it anyway.

In this 1-dimensional example, we only have one undefined point, x = 1. But if we generalize this
method to actually relevant problems, things get worse: in the n-dimensional case, the gradient
∇Fk(x) is undefined whenever gi(x) = 0 for any i. So we end up checking the entire boundary of
the feasible region of the problem as a special case.

A lot of the time, the optimal point will be on the boundary of the feasible region. So this method
won’t really help us there.

2 The Courant–Beltrami penalty function

The Courant–Beltrami penalty function modifies the method by paying a different penalty for
violating the constraints: a penalty that makes sure that (provided we start with differentiable
functions) the resulting function Fk will always be differentiable. Here, we take

Fk(x) = f(x) + k
[
(g+1 (x))2 + (g+2 (x))2 + · · ·+ (g+m(x))2

]
.

This has a continuous gradient because max{0, x2} has a continuous first derivative: at 0, the
derivative is 0 from both sides. In general, when we take the gradient of (g+(x))2, we get

∇(g+(x))2 =

{
∇(g(x))2 = 2g(x)∇g(x) g(x) ≥ 0,

0 g(x) ≤ 0.

We can write this in one line as ∇(g+(x))2 = 2g+(x)∇g(x).

So in our easy example, we set

Fk(x) = x2 + k[(1− x)+]2 =

{
x2 x ≥ 1,

x2 + k(1− x)2 x ≤ 1.

Taking the derivative, we get

F ′
k(x) = 2x− 2k(1− x)+ =

{
2x x ≥ 1,

2x− 2k(1− x) x ≤ 1.

Just to reassure ourselves, we can check that F ′
k(1) = 2 by using either case of the definition, so

F ′
k(x) exists and is continuous for all x.

Now we solve F ′
k(x) = 0 for x.
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• In the case x ≥ 1, we set 2x = 0, and get x = 0 as the answer. This does not satisfy x ≥ 1,
so we throw it out. No critical points arise in this case.

• In the case x ≤ 1, we set 2x− 2k(1− x) = 0, or (2 + 2k)x = 2k, and get x = 2k
2+2k = k

k+1 as
the answer. For all k ≥ 0, this satisfies x ≤ 1, so we do get a critical point.

So the only critical point of Fk(x) is at x = k
k+1 . In fact, x = k

k+1 is a global minimizer of
Fk(x).

Note that k
k+1 is not actually feasible for the original problem: it does not satisfy the constraint

x ≥ 1. This is typical when using the Courant–Beltrami penalty function. However, k
k+1 is still

a useful answer, because as k → ∞, k
k+1 → 1, and x = 1 is the optimal solution to the original

problem.

We are going to see that this will happen for sufficiently nice nonlinear programs. We might
encounter several difficulties along the way:

• If the objective function f(x) can approach −∞ somewhere outside the feasible region, then
the penalty method becomes a race between how quickly f decreases and how quickly the
penalty term increases to make up for it.

We can’t guarantee anything about who wins that race, so we will assume that f is bounded
from below.

• Under mild assumptions, we’ll be able to show that, provided that the optimal solution to
the penalty problem exists and converges to something as k → ∞, then it converges to an
optimal solution to the original problem.

So then we will want to have some reason to expect this convergence to happen.

• Sometimes, the original problem has multiple optimal solutions. This is not really a problem
for applying the method, as we’ll see; it is a problem for having nice statements for our
theorems, because the optimal solution to the penalty problem can’t converge to multiple
things at the same time.

This will make our theorems a bit more complicated; we’ll have to talk about “convergent
subsequences” and the like.
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