1 Definitions of convex functions

Convex functions \(f : \mathbb{R}^n \to \mathbb{R} \) with \(Hf(x) \succeq 0 \) for all \(x \), or functions \(f : \mathbb{R} \to \mathbb{R} \) with \(f''(x) \geq 0 \) for all \(x \), are going to be our model of what we want convex functions to be. But we actually work with a slightly more general definition that doesn’t require us to say anything about derivatives.

Let \(C \subseteq \mathbb{R}^n \) be a convex set. A function \(f : C \to \mathbb{R} \) is convex on \(C \) if, for all \(x, y \in C \), the inequality holds that
\[
f(tx + (1-t)y) \leq tf(x) + (1-t)f(y).
\]
(We ask for \(C \) to be convex so that \(tx + (1-t)y \) is guaranteed to stay in the domain of \(f \).)

This is easiest to visualize in one dimension:

The point \(tx + (1-t)y \) is somewhere on the line segment \([x, y] \). The left-hand side of the definition, \(f(tx + (1-t)y) \), is just the value of the function at that point: the green curve in the diagram. The right-hand side of the definition, \(tf(x) + (1-t)f(y) \), is the dashed line segment: a straight line that meets \(f \) at \(x \) and \(y \).

So, geometrically, the definition says that secant lines of \(f \) always lie above the graph of \(f \).

Although the picture we drew is for a function \(\mathbb{R} \to \mathbb{R} \), nothing different happens in higher dimensions, because only points on the line segment \([x, y] \) (and \(f \)'s values at those points) play a role in the inequality.

The nice thing about this definition is that:

- All the nice things we’ve said about functions with \(Hf(x) \succeq 0 \), and more, still hold for convex functions in general.
- But we don’t have to deal with derivatives to prove them.

For example, we can show the following result.

1This document comes from the Math 484 course webpage: https://faculty.math.illinois.edu/~mlavrov/courses/484-fall-2018.html
Theorem 1.1. If $C \subseteq \mathbb{R}^n$ is a convex set, $f : C \to \mathbb{R}$ is a convex function, and $x^* \in C$ is a local minimizer of f, then it is a global minimizer.

Proof. Suppose not: suppose there is a point $y \in C$ with $f(y) < f(x^*)$.

Then the secant line that meets f at x^* and y is decreasing in slope in the direction from x^* to y. In particular, if we move along the secant line from x^* to y, we always stay below $f(x^*)$. But the graph of f is below the secant line, so the graph of f always stays below $f(x^*)$.

This means that if we move in the direction of y even a tiny bit, then we get a point with smaller f-value, contradicting the assumption that x^* was a local minimizer.

Okay, we can also do all that in algebra, which might be more convincing to some people. Assuming x^* is a local minimizer, there is an open ball B around x^* such that $f(x^*) \leq f(y)$ for all $y \in B$. For any x, choose t small enough that $tx + (1 - t)x^* \in B$. Then

$$f(x^*) \leq f(tx + (1 - t)x^*) \leq tf(x) + (1 - t)f(x^*)$$

by convexity of f, which can be rearranged to $tf(x^*) \leq tf(x)$, or $f(x^*) \leq f(x)$.

\[\Box\]

2 Jensen’s inequality

Jensen’s inequality—one of the most useful inequalities that ever inequalitied—is the result below:

Theorem 2.1. For any $\lambda_1, \lambda_2, \ldots, \lambda_k \geq 0$ with $\lambda_1 + \lambda_2 + \cdots + \lambda_k = 1$, if $f : C \to \mathbb{R}$ is convex and $x^{(1)}, \ldots, x^{(k)} \in C$, then

$$f(\lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \cdots + \lambda_k x^{(k)}) \leq \lambda_1 f(x^{(1)}) + \lambda_2 f(x^{(2)}) + \cdots + \lambda_k f(x^{(k)}).$$

This might seem very similar to the property of convex sets we proved in the previous lecture: that a convex combination of points in a convex set C is still an element of C. It is! It is so similar, in fact, that we can take a shortcut and get this theorem as a corollary of the theorem from the last lecture. (For the non-shortcut proof, which is essentially a rehash of the proof of the previous theorem, see your textbook.)

We’ll need a definition first. Given a subset $C \subseteq \mathbb{R}^n$ and a function $f : C \to \mathbb{R}$, its **epigraph** is the set

$$\text{epi}(f) = \{ (x, y) \in C \times \mathbb{R} : y \geq f(x) \}.$$

The prefix “epi” means “above”, so “epigraph” means “above the graph”, and this is just what the epigraph is: it’s the subset of \mathbb{R}^{n+1} (one dimension higher, because we’re graphing) above the graph of f.

The key relationship between convex functions and convex sets is that the function f is a convex function if and only if its epigraph $\text{epi}(f)$ is a convex set. I will not prove this, but essentially the definition of a convex function checks the “hardest case” of convexity of $\text{epi}(f)$: the case where we pick two points on the boundary of the epigraph—the graph of f itself.

Now, to prove the theorem.
Proof. For each of the points \(x^{(1)}, \ldots, x^{(k)} \), there is a corresponding point in \(C \times \mathbb{R} \): the points \((x^{(1)}, f(x^{(1)})\) through \((x^{(k)}, f(x^{(k)})\). These are points on the graph of \(f \), and therefore in epi(\(f \)). Because epi(\(f \)) is a convex set, their convex combination with weights \(\lambda_1, \ldots, \lambda_k \) is still in epi(\(f \)). This convex combination is the point

\[
(x^*, y^*) = (\lambda_1 x^{(1)} + \cdots + \lambda_k x^{(k)}, \lambda_1 f(x^{(1)}) + \cdots + \lambda_k f(x^{(k)})).
\]

Its first \(n \) coordinates (its position in the graph) are the weighted average of \(x^{(1)}, \ldots, x^{(k)} \), and its \((n+1)\)th coordinate (its height in the graph) is the weighted average of their \(f \)-values.

What does it mean for this point to be in epi(\(f \))? It means that its \(y \)-coordinate is above the value of \(f \) at its \(x \)-coordinate: \(f(x^*) \leq y^* \).

Looking at what \(x^* \) and \(y^* \) are, this is precisely the inequality

\[
f(\lambda_1 x^{(1)} + \lambda_2 x^{(2)} + \cdots + \lambda_k x^{(k)}) \leq \lambda_1 f(x^{(1)}) + \lambda_2 f(x^{(2)}) + \cdots + \lambda_k f(x^{(k)})
\]

that we wanted. \(\square \)

3 Applications of Jensen’s inequality

Jensen’s inequality—even applied to simple, one-dimensional convex functions—is useful for solving optimization problems in one simple step.

Taking the weights \(\lambda_1 = \cdots = \lambda_k = \frac{1}{k} \), Jensen’s inequality says that

\[
\frac{1}{k} f(x_1) + \cdots + \frac{1}{k} f(x_k) \geq f\left(\frac{1}{k} x_1 + \cdots + \frac{1}{k} x_k\right),
\]

or

\[
f(x_1) + \cdots + f(x_k) \geq k \cdot f\left(\frac{x_1 + \cdots + x_k}{k}\right).
\]

In other words, if \(x_1 + x_2 + \cdots + x_k \) is fixed and \(f : \mathbb{R} \to \mathbb{R} \) is convex, then the sum \(f(x_1) + f(x_2) + \cdots + f(x_k) \) is minimized by setting \(x_1, \ldots, x_k \) all equal to their average.

3.1 Classic calculus problem

Given 100 feet of fencing, what is the largest rectangular region we can enclose?

Let \(x_1 \) be the height and \(x_2 \) the width. We are given \(2x_1 + 2x_2 = 100 \), or \(x_1 + x_2 = 50 \).

We want to maximize \(x_1 x_2 \), which does not look like Jensen’s inequality. But it’s equivalent to minimize \(-\log(x_1 x_2) = -\log(x_1) + -\log(x_2) \).

Since \(f(x) = -\log x \) is convex, \(f(x_1) + f(x_2) \) is minimized when we take \(x_1 = x_2 = 25 \), giving an area of \(x_1 x_2 = 625 \).
3.2 Standard combinatorics problem

The integers 1, 2, \ldots, 100 are colored by 10 colors. At least how many pairs \(\{a, b\} \subseteq \{1, 2, \ldots, 100\} \) have the same color?

Let \(x_1, x_2, \ldots, x_{10} \) be the number of integers that get color 1, 2, \ldots, 10. We are given \(x_1 + x_2 + \cdots + x_{10} = 100 \), since all integers get a color.

If color \(i \) has \(x_i \) integers, there are \(\binom{x_i}{2} = \frac{x_i(x_i-1)}{2} \) pairs of integers that both have color \(i \). So we are trying to minimize

\[
\binom{x_1}{2} + \cdots + \binom{x_{10}}{2}.
\]

Since \(f(x) = \binom{x}{2} \) is a convex function, this is minimized when \(x_1 = x_2 = \cdots = x_{10} = 10 \). In this case, we have \(\binom{10}{2} = 45 \) pairs of the same color for each color, and 450 pairs total.