1. Show that the functions are convex on the indicated set.
 (a) $f(x) = |x^3|$ on \mathbb{R}.
 (b) $f(x_1, x_2, x_3) = (x_1 - x_2)^4 + (x_2 - x_3)^4$ on \mathbb{R}^3.
 (c) $f(x, y) = x^x y^y$ on $\{(x, y) \in \mathbb{R}^2 : x > 0, y > 0\}$.

2. Use the AM-GM inequality to solve this optimization problem:
 \[
 \begin{align*}
 \text{minimize} & \quad x^2 + y^2 + z \\
 \text{subject to} & \quad xyz = 1, \\
 & \quad x, y, z > 0.
 \end{align*}
 \]
 (Note that z is not squared!)

3. Use Jensen’s inequality to derive the following inequality: if x_1, x_2, \ldots, x_n are positive real numbers, then
 \[
 \frac{x_1 + x_2 + \cdots + x_n}{n} \geq \frac{1}{\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n}}.
 \]
 (The right-hand side of the inequality is known as the harmonic mean of x_1, x_2, \ldots, x_n: it is the reciprocal of the average of the reciprocals of x_1, x_2, \ldots, x_n.)

4. Write down the dual of the geometric program
 \[
 \begin{align*}
 \text{minimize} & \quad xy^2 + xyz + \frac{4yz^2}{x} \\
 \text{subject to} & \quad x, y, z > 0.
 \end{align*}
 \]

5. (Only 4-credit students need to do this problem.)
 Let $f : \mathbb{R}^n \to \mathbb{R}$ be a strictly convex function. Suppose that x and y are distinct points in \mathbb{R}^n such that $f(x) = f(y) = 0$. Show that there is a $z \in \mathbb{R}^n$ such that $f(z) < 0$.