1. A zero-sum game between Alice and Bob has the payoff matrix below (with respect to Alice). Determine the possible saddle points this game could have, depending on the value of x, and for which x those outcomes would be saddle points.

$$
\begin{array}{c|ccc}
\text{Alice: } & \text{Bob: } a & \text{Bob: } b & \text{Bob: } c \\
\hline
\text{Alice: } A & 2 & 3 & 8 \\
\text{Alice: } B & 5 & x & 7 \\
\text{Alice: } C & 4 & 1 & 0 \\
\end{array}
$$

2. Alice and Bob each have a nickel (5 cents), a dime (10 cents), and a quarter (25 cents). They simultaneously put a coin down on the table. If the coins are equal in value, Alice wins Bob’s coin; if Alice’s coin is more valuable, Bob wins Alice’s coin; if Bob’s coin is more valuable, nothing happens.

Draw a payoff matrix for this game and write down a linear program by which Alice could determine her optimal strategy.

3. Solve the linear program below using the revised simplex method:

$$
\begin{align*}
\text{maximize} & \quad x + y \\
\text{subject to} & \quad -x + 3y \leq 6 \\
& \quad 2x - y \leq 8 \\
& \quad x, y \geq 0 \\
\end{align*}
$$

4. Use Fourier–Motzkin elimination to find a point satisfying

$$
\begin{align*}
x + y - z & \leq 5 \\
2x - y + 2z & \leq -2 \\
x + 2y & \leq -1 \\
-3x - y + 2z & \leq 1 \\
\end{align*}
$$

5. (Only 4-credit students need to do this problem.)

Use Farkas’s lemma to prove LP duality in the following form: if the linear program (P) below cannot achieve an objective value of at least z^*, and the dual program (D) is feasible, then the dual linear program (D) has a feasible solution u with objective value less than z^*.

$$(P) \begin{cases}
\text{maximize} & \quad c^T x \\
\text{subject to} & \quad A x \leq b \\
\end{cases} \quad (D) \begin{cases}
\text{minimize} & \quad u^T b \\
\text{subject to} & \quad u^T A = c^T \\
& \quad u \geq 0 \\
\end{cases}$$