1. Linear differential equations

In the vector-valued situation, Picard’s iteration works equally well.

Proposition 1.1. Let I be an interval and X be a Banach space. Let $x_0 \in I$ and $y_0 \in X$ and $\delta > 0$. Let $\phi : I \times \bar{B}(y_0, \delta) \to X$ be a continuous function such that
\[\| \phi(t, x) - \phi(t, y) \| \leq L \| x - y \| . \]
Then there exists an h such that $f'(t) = \phi(t, f(t))$ with $f(x_0) = y_0$ has a unique solution among continuous functions $f : (x_0 - h, x_0 + h) \to \bar{B}(y_0, \delta)$.

Proof. Define
\[T(f)(t) = y_0 + \int_0^t \phi(s, f(s))ds \]
Let $\alpha > L$ and $h > 0$. We consider the Banach space
\[Y = \{ f : [x_0 - h, x_0 + h] \to X : f \text{ continuous} \} \]
with the norm
\[\| f \| = \sup_{|s| \leq h} e^{-\alpha|s|} \| f(x_0 + s) \| . \]
We consider the closed subset C defined by
\[C = \{ f : f([x_0 - h, x_0 + h]) \subset \bar{B}(y_0, \delta) \} . \]
With the appropriate choice of h we find $T(C) \subset C$. The Banach contraction principle yields a fixpoint $T(f) = f$ which satisfies
\[f'(t) = \phi(t, f(t)) . \]
For any solution $g'(t) = \phi(t, g(t))$ with $g(x_0) = y_0$ we have
\[y_0 + \int_{x_0}^t \phi(s, g(s))ds = y_0 + \int_{x_0}^t g'(s)ds = g(t) . \]
Thus we have uniqueness for continuous g with values in $\bar{B}(y_0, \delta)$.

Let us recall the usual trick for transforming DE with linear coefficients into systems:
We are given the differential equation
\[y''(x) + \sum_{k=0}^{n-1} a_k y^k(x) = 0 \]
with conditions \(y(x_0) = y_0, \ y'(x_0) = y_1, \ldots, y^{(n-1)}(x_0) = y_{n-1}. \) Then we introduce the new variables

\[
y_0 = y, \ y_1 = y', \ldots, \ y_{n-1} = y^{(n-1)}.
\]

This leads to the matrix valued equation

\[
\vec{y}' = A(\vec{y}), \ \vec{y}(x_0) = (y_0, \ldots, y_{n-1})
\]

where

\[
A = \begin{pmatrix}
0 & 1 & 0 & \cdots \\
0 & 0 & 1 & 0 & \cdots \\
\vdots \\
0 & 0 & \cdots & 0 & 1 \\
-a_0 & -a_1 & \cdots & -a_{n-2} & -a_{n-1}
\end{pmatrix}.
\]

Proposition 1.2. Let \(X \) be a Banach space and \(A : X \to X \) be linear map. The differential equation

\[
f'(t) = A(t), \quad f(0) = y_0
\]

has the (unique) solution

\[
f(t) = e^{tA}y_0.
\]

Proof. We consider the power series

\[
g(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!}A^k
\]

with values in \(L(X, X) \). By Lemma 7.10, we deduce

\[
g'(t) = \sum_{k=1}^{\infty} \frac{t^{k-1}}{(k-1)!}A^k = Ag(t).
\]

Therefore the chain rule implies that

\[
f(t) = g(t)y_0 = e_{y_0}(g(t))
\]

satisfies

\[
f'(t) = e_{y_0}(g'(t)) = g'(t)y_0 = A(g(t)y_0) = A(f(t)).
\]

The condition \(f(0) = y_0 \) is obvious. (Note that uniqueness follows from the Picard iteration method.)
1. LINEAR DIFFERENTIAL EQUATIONS 3

LEMMA 1.3. Let A be a complex $n \times n$ matrix and U invertible such that $A = UBU^{-1}$. Then for every power series $f(t) = \sum_k a_k t^k$ converging on \mathbb{R} we have

$$f(A) = U f(B) U^{-1}.$$

PROOF. Since power series are uniformly converging it suffice to show the assertion for polynomials. By linearity we only have to consider $f(t) = t^k$. However,

$$A^k = [UBU^{-1}]^k = UBU^{-1}UB\cdots U^{-1}UBU^{-1} = UB^kU^{-1}. \quad \Box$$

LEMMA 1.4. Let B an $n \times n$-Jordan block for the eigenvalue λ. Then

$$e^{tB} = e^{\lambda t} \left(\sum_{k=0}^n \frac{t^k}{k!} \sum_{j=1}^{n-1-k} e_{j,j+k+1} \right)$$

where e_{ij} are the matrix units.

PROOF. We may write $B = \lambda 1 + C$ where

$$C = \sum_{j=1}^{n-1} e_{j,j+1}$$

is a sum of matrices with only one entry. Note that $e_{r,s}e_{st} = \delta_{rs}e_{tt}$. Then we get

$$C^m = \left(\sum_{j=1}^{n-1} e_{j,j+1} \right)^m$$

$$= \sum_{j_1,\ldots,j_m=1}^{n-1} e_{j_1,j_1+1} \cdots e_{j_m,j_m+1}$$

$$= \sum_{j=1}^{m} e_{j,j+1} e_{j+1,j+2} \cdots e_{j+m,j+m+1}$$

$$= \sum_{j=1}^{m} e_{j,j+m+1}.$$

In particular, $C^n = 0$. This yields

$$e^{tC} = \sum_{k=0}^{\infty} \frac{t^k C^k}{k!} = \sum_{k=0}^{n} \frac{t^k}{k!} \sum_{j=1}^{n-1-k} e_{j,j+k+1}.$$

Finally we note that that for commuting matrices $e^{A+B} = e^A e^B$ follows from the properties of the binomial coefficients (as for scalars). \quad \Box
An example will illustrate the procedure

\[C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}. \]

Then, we have

\[C^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \]

Since \(C^3 = 0 \), we get

\[e^{tC} = \begin{pmatrix} 1 & t & \frac{t^2}{2} \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix}. \]

Thus the monomials \(\frac{t^n}{n!} \) ‘move’ in the shifted diagonal. Note that the solutions of \(e^{\lambda \gamma} \) should appear as linear combinations of the columns.

Corollary 1.5. Let \(A \) be (real) \(n \times n \) matrix. Then the space of solutions

\[y' = Ay \]

has dimension \(n \). The complex solutions are of the form \(y(t) = e^{\lambda_j t}v(t) \) where \(v \) is a vector of polynomials of degree \(< s_j \) where \(s_j \) is the power of \(\lambda_j \) occurring in the minimal polynomial of \(A \). The function \(g(t) = \det(e^{tA}) \) is called the Wronskian and satisfies

\[g'(t) = \tr(A)g(t). \]

Proof. Every solution is uniquely determined by the initial condition \(y(0) \) and \(y(t) = e^{At}y(0) \). By changing the initial conditions, we may assume that \(A \) is in Jordan normal form. Then the assertion on the particular form follows immediately from the considerations above. The second assertion follows from the chain rule. Indeed for \(t = 0 \) we have

\[g'(0) = (\det)'(1)(A) = \tr(A). \]

For arbitrary \(t \) we have

\[\lim_{h \to 0} \frac{\det(e^{t+h}A) - \det(e^{tA})}{h} = \lim_{h \to 0} \frac{\det(e^{hA}) - 1}{h} \det(e^{tA}) = \tr(A)g(t). \]
Lemma 1.6. Let A be the matrix from (8.2). Then

$$\det(A - \lambda) = (-1)^n \left(\sum_{k=0}^{n-1} a_k \lambda^k + \lambda^n \right)$$

Proof. For $n = 2$ we have

$$\det(A - \lambda) = -\lambda(-(a_1 + \lambda)) - (-a_0) = \lambda^2 a_2 + \lambda a_1 + a_0 .$$

Now, we proceed by induction and develop the determinant after the first column. Then

$$\det(A - \lambda) = -\lambda \det_{n-1}((A - \lambda)_{1,1}) + (-1)^{n-1}(-a_0)$$

$$= (-\lambda)(-1)^{n-1} \left(\sum_{k=0}^{n-2} a_{k+1} \lambda^k + \lambda^{n-1} \right) + (-1)^n a_0$$

$$= (-1)^n \left(\sum_{k=0}^{n-1} a_k \lambda^k + \lambda^n \right).$$

Proposition 1.7. Let $p(x) = \sum_{k=0}^{n} a_k x^k$ be a polynomial of degree n with $a_n = 1$. Let $\lambda_1, \ldots, \lambda_m$ be the roots of the polynomial and

$$p(x) = \prod_{j=1}^{m} (x - \lambda_j)^{r_j} .$$

Then the system

$$e^{\lambda_1 t}, \ldots, e^{\lambda_1 t r_1 - 1}, \ldots, e^{\lambda_m t}, \ldots, e^{\lambda_m t r_m - 1}$$

is basis for the space of solutions of

$$\sum_{k=0}^{n} a_k y^{(k)} = 0 .$$

Proof. On the algebra $C_\infty(\mathbb{R}, \mathbb{C})$ of infinitely often differentiable maps we define the linear map

$$D(f) = f' .$$

The our problem is to find solutions for

$$p(D)f = 0 .$$

Note that

$$p(x) = \prod_{j=1}^{m} (x - \lambda_j)^{r_j}$$

implies (after doing the math) that

$$p(D) = \prod_{j=1}^{m} (D - \lambda_j)^{r_j} .$$
Now, we consider \(j = 1, \ldots, m \) and \(f_k(t) = e^{\lambda_j t} t^k \). Note that
\[
(D - \lambda_j)f_k = (D - \lambda_j)e^{\lambda_j t} t^k = (e^{\lambda_j t} t^k)' - \lambda_j e^{\lambda_j t} t^k \\
= \lambda_j e^{\lambda_j t} t^k + e^{\lambda_j t} k t^{k-1} - \lambda_j e^{\lambda_j t} t^k = ke^{\lambda_j t} t^{k-1}.
\]
By induction we get
\[
(D - \lambda_j)^r f_k = k(k-1) \cdots (k-r+1) f_{k-r}.
\]
Thus for \(k < r \) we always find 0. Collection all the solutions we have found \(n \) solutions \(y_1, \ldots, y_n \). Using the matrix \(A \) from (8.2) we may write
\[
\vec{y}_j(t) = e^{tA} \vec{y}_j(0)
\]
where
\[
\vec{y}(t) = \begin{pmatrix} y(t) \\ y'(t) \\ \vdots \\ y^{n-1}(t) \end{pmatrix}.
\]
In order to show linear independence we recall that by Lemma 6.6 we know the characteristic polynomial for \(A \) and thus Corollary 6.5 tells us that we find a system of \(n \) linear independent solutions in the span of the solutions discovered above. Thus the solutions have to be linearly independent.