CHAPTER 1

Topological vector spaces

1. Vector spaces

In the following F is a field.

Definition 1.1. A vector space V over F is given by a commutative group $(V, +, 0)$ and a map $m : F \times V \to V$ such that

$$m(\lambda, x + y) = m(\lambda, x) + m(\lambda, y).$$

Definition 1.2. Let V be a vector space. A system $S \subset V$ is said to be linear independent, if for every finite family $(\lambda_s)_{s \in S}$ of scalars

$$\sum_{s \in S} \lambda_s s = 0$$

implies $\lambda_s = 0$ for all $s \in S$.

Example 1.3. $C[0, 1]$ is a vector space. The polynomials $\{p_k : k \geq 0\}$ are independent ($p_k(t) = t^k$).

Example 1.4. The space $F(\mathbb{R}) = \mathbb{R}^\mathbb{R}$ is a vector space over \mathbb{R}.

Example 1.5. Let I be an index set. Then $F^I = \{f : I \to F : \text{function}\}$ is a vector space over F.

Example 1.6. \mathbb{R} is a vector space over \mathbb{Q}.

Definition 1.7. A subspace W of V is a subset $W \subset V$ such that $x, y \in W$ and $\lambda \in F$ implies

$$x + \lambda y \in W.$$

Example 1.8. Let I be an index set. Consider $F(I) \subset F^I$ defined by

$$F(I) = \{f : I \to F : \exists_{S \subset I \text{finite}}(i \notin S \Rightarrow f(i) = 0)\}.$$

$F(I)$ is called the free vector space over I.

Proposition 1.9. Let $W \subset V$ be a subspace. Define $x \sim y$ by $x - y \in W$. Then \sim is an equivalence relation and V/\sim is a vector space. This space is denoted by V/W.
1. TOPOLOGICAL VECTOR SPACES

Proof. Obviously, ∼ is an equivalence relation. We define the operations

\[[x] + \lambda [y] = [x + \lambda y] \, . \]

If \(x - x' \in W \) and \(y - y' \in W \), then \(x - x' + \lambda (y - y') \in W \). Thus \(V/\sim \) is a vector space. □

Definition 1.10. Let \(V \) and \(W \) be vector spaces. The direct sum \(V \oplus W \) is the vector space \(V \times W \) with the operation

\[(x, y) + \lambda (x', y') = (x + \lambda x', y + \lambda y') \, . \]

Definition 1.11. 1) Let \(S \subset V \). Then the span of \(S \) is defined as

\[\text{span}(S) = \{ \sum \lambda_s s : \lambda_s \in F, S' \subset S \text{ finite} \} \, . \]

2) \(B \subset V \) is called a basis if \(B \) is linear independent and \(\text{span}(B) = V \).

Theorem 1.12. Every vector space has a basis.

Proof. Consider the collection \(L \) of linear independent subsets of \(V \). We say that \(S_1 \leq S_2 \) of \(S_1 \subset S_2 \). Let \((S_i)_{i \in I} \) be a chain, i.e. for every \(i \) and \(j \in I \) there exists \(k \in I \) such that \(S_i \subset S_k \) and \(S_j \subset S_k \). We claim that \(S = \bigcup_{i \in I} S_i \) is linear independent. For let \((\lambda_s)_{s \in S'} \) be finite family such that

\[\sum_{s} \lambda_s s = 0 \, . \]

For every \(s \in S' \) we find \(i(s) \) such that \(s \in S_{i(s)} \). Since \(S' \) is finite we may find \(k \in I \) such that \(S_{i(s)} \subset S_k \) for all \(s \in S' \). Hence, \(\{ s : S' \} \subset S_k \). By linear independence, we deduce \(\lambda_s = 0 \) for all \(s \in S' \). By Zorn’s Lemma, we find a maximal element \(B \) in \(L \). This means for no \(x \in V B \cup \{ x \} \in L \). We claim that \(V = \text{span}(B) \). Let us show that \(x \notin \text{span}(B) \) implies that \(B \cup \{ x \} \) is linear independent. Indeed, let \(\lambda_x \) and \((\lambda_s)_{s \in S}, S \subset B \) finite such that

\[\lambda_x x + \sum_{s} \lambda_s s = 0 \, . \]

If \(\lambda_x = 0 \), we deduce \(0 = \sum_{s} \lambda_s s \) and hence \(\lambda_s = 0 \) for all \(s \in S \). If \(\lambda_x \neq 0 \) we find

\[x = \sum_{s} -\lambda_s / \lambda_x s \, . \]

Since \(x \notin \text{span}(B) \) we deduce \(\lambda_x = 0 \) and the assertion follows. □
Example 1.13. \{1, \sqrt{2}\} is linear independent over \(\mathbb{Q} \). Let \(B \) be a basis for \(\mathbb{R} \) over \(\mathbb{Q} \). Then we find an injective map
\[
\Phi : \mathbb{R} \to \bigcup_{S' \subset B \text{ finite}} \mathbb{Q}^{S'}
\]
Since \(\mathbb{Q}^{S'} \) is countable and for an infinite \(B \) set the collection of all finite subsets of \(B \) has the same cardinality as \(B \), we deduce that \(B \) has the same cardinality as \(\mathbb{R} \).

2. Linear transformations

Definition 2.1. Let \(V \) and \(W \) vector spaces over \(F \). A map \(T : V \to W \) is called linear, if
\[
T(x + \lambda y) = T(x) + \lambda T(y)
\]
holds for all \(x, y \in V \). A linear map \(T \) is called an isomorphism if \(T \) is bijective.

Remark 2.2. 1) If \(T(V) \) is a subspace of \(W \).
2) If \(T : V \to W \) is bijective, then \(T^{-1} \) is linear.
3) If \(T : V \to W \) and \(S : W \to Z \) are linear maps, then the composition \(ST : V \to Z \) is linear.

Example 2.3. Let \(\phi : I \to J \) be a map. Then
\[
T_\phi : F(J) \to F(I) \ , \ T(f) = f \circ \phi
\]
is a linear map. If \(\phi \) is bijective, then \(T_\phi \) is an isomorphism.

Theorem 2.4. Every vector space is isomorphic to a free vector space.

Proof. Let \(B \) be a basis. We define \(T : F(B) \to V \) by
\[
T(f) = \sum_{b \in B} f(b) b.
\]
Note that \(T(f) \) is well-defined because only finitely many coordinates are non-zero. It is easily checked that \(T \) is an isomorphism.

Proposition 2.5. Let \(V \) be a vector space and \(W \) be a subspace. Then \(V \) isomorphic to \(W \oplus V/W \).

Proof. Let \(B \) be a basis of \(V/W \). Let \(f : B \to V \) such that \(f(b) \in b \) holds for all \(b \in B \). Let us show that \(\{ f(b) : b \in B \} \) is linearly independent. Indeed, if we assume
\[
0 = \sum_{b} \lambda_b f(b)
\]
then $0 = [0] = \sum b \lambda_b[f(b)] = \sum b \lambda_b b$. Hence $\alpha_b = 0$. Therefore, we may define $T_2 : V/W \to V$ by

$$T_2(\sum b \lambda_b b) = \sum b \lambda_b f(b).$$

Then we define $T : W \oplus V/W \to V$ by

$$T(w, x) = w + T_2(x).$$

Obviously, T is linear. Let us show that T is injective. This is to show $T(w, x) = 0$ implies $w = 0$ and $x = 0$. Let $x = \sum b \lambda_b f(b)$. $0 = T(w, x)$ implies $T_2(x) \in W$. Hence

$$0 = \sum b \lambda_b[f(b)] = \sum b \lambda_b b = x.$$

Thus $x = 0$, $T_2(x) = 0$ and $w = 0$. Let $y \in V$. We write $[y] = \sum b \lambda_b b$. Then we have

$$[y - \sum b \lambda_b f(b)] = [y] - \sum b \lambda_b[f(b)] = [y] - \sum b = 0.$$

Thus $y \sim \sum b \lambda_b f(b)$. We get

$$T(y - \sum b \lambda_b f(b), [y]) = y.$$

Hence T is bijective.

Definition 2.6. Let $T : V \to W$. We define the kernel

$$\ker(T) = \{x \in V : T(x) = 0\}$$

and $\text{rg}(V) = T(V)$ the range.

Proposition 2.7. Let $V \to W$ be a linear map and $q : V \to V/\ker(T)$ be the quotient map $q(x) = [x]$. There exists a unique injective linear map $\hat{T} : V/\ker(T) \to W$ such that $q\hat{T} = T$.

Proof. We have to show that $\hat{T}([x]) = T(x)$ is well-defined. However $x - x' \in \ker(T)$ implies $T(x) - T(x') = T(x - x') = 0$. Now, we assume $\hat{T}([x_1]) = \hat{T}([x_2])$. Then $T(x_1) = T(x_2)$. This implies $T(x_1 - x_2) = 0$. In particular, $x_1 \sim x_2$.

Definition 2.8. We define $\dim(V)$ to be the smallest cardinal number given by a basis. It is easy to show that

$$\dim(V \oplus W) = \dim(V) + \dim(W).$$
Corollary 2.9. Let $T : V \to W$. Then
\[\dim(\ker(T)) + \dim(\rg(T)) = \dim(V). \]

Proof. Since $\tilde{T} : V/\ker(T) \to \rg(T)$ is an isomorphism, we see that
\[V \cong \ker(T) \oplus V/\ker(T) \cong \ker(T) \oplus \rg(T). \]

The formula for the dimensions follows.

Corollary 2.10. Let V be a finite dimensional vector space and $T : V \to V$. Then T is injective if and only if T is surjective.

Proof. T is injective iff $\dim(\ker(T)) = 0$ iff $\dim(\rg(T)) = n$.

Corollary 2.11. Let W_1 and W_2 be finite dimensional subspaces of a vector space V. Then
\[\dim(W_1) + \dim(W_2) = \dim(W_1 + W_2) + \dim(W_1 \cap W_2). \]

Proof. W.l.o.g. we may assume $V = W_1 + W_2$. Let us first assume that $W_1 \cap W_2 = \{0\}$. Then the map $\iota : W_2 \to V/W_1$ is bijective and hence
\[\dim(W_1 + W_2) = \dim(V/W_1) + \dim(W_1) = \dim(W_2) + \dim(W_1). \]

Now, we consider the general case. Since $W_1 \cap W_2$ is a subspace of V, W_1 and W_2 we have
\[\dim(W_1 + W_2) = \dim(W_1 + W_2/W_1 \cap W_2) + \dim(W_1 \cap W_2), \]
\[\dim(W_1) = \dim(W_1/W_1 \cap W_2) + \dim(W_1 \cap W_2), \]
\[\dim(W_2) = \dim(W_2/W_1 \cap W_2) + \dim(W_1 \cap W_2). \]

The assertion follows from
\[\dim(W_1 + W_2/W_1 \cap W_2) = \dim(W_1/W_1 \cap W_2) + \dim(W_2/W_1 \cap W_2) \]
which is particular of our preliminary observation because $W_1/W_1 \cap W_2/W_2/W_1 \cap W_2 = \{0\}$.

Definition 2.12. Let B be a basis for V and $S \subset V$. Then we find scalars $\lambda_{b,s}$ such that
\[s = \sum_{b \in B} \lambda_{s,b} b. \]

The matrix $m_{S,B} = [\lambda_{s,b}]_{s \in S \ b \in B}$ is called transition matrix.
Lemma 2.13. Let B and S be a basis for V with transition matrices $m_{B,S}$ and $m_{S,B}$. Then
\[\text{id} = m_{S,B}m_{B,S} \quad \text{and} \quad \text{id} = m_{B,S}m_{S,B}. \]

Proof. Let $b \in B$. Then we have
\[
b = \sum_{s \in S} \mu_{b,s}s = \sum_{s \in S} \mu_{b,s} \sum_{b' \in B} \lambda_{s,b}'b' = \sum_{b' \neq b} \left(\sum_{s} \mu_{b',s} \lambda_{s,b} \right)b' + \left(\sum_{s} \mu_{b,s} \lambda_{s,b} \right)b.
\]
By linear independence, we get
\[
\sum_{s} \mu_{b',s} \lambda_{s,b} = \delta_{b',b}.
\]
This shows $m_{S,B}m_{B,S} = \text{id}$. Starting with elements in s yields the first assertion. ■

Let $T : V \rightarrow W$ be a linear map and C a basis for V and B be a basis for W. We may write
\[T(c) = \sum_{b \in B} \lambda_{c,b}b. \]
Then $m_{C,B}^T = [\lambda_{b,c}]$ is the matrix associated to T (with respect to C and B).

Lemma 2.14. Let B and S be a matrix for V and C, D be a basis for W. Then
\[m_{D,S}^T = m_{D,C}m_{C,B}^Tm_{B,S}. \]

Proof. Assume $D = C$ first. Then
\[T(c) = \sum_{b \in B} \lambda_{c,b}b = \sum_{b \in B} \lambda_{c,b} \sum_{s \in S} \mu_{b,s}s. \]
This yields
\[m_{C,S}^T = m_{C,B}^Tm_{B,S}. \]
The equation
\[m_{D,B}^T = m_{D,C}m_{C,B}^T \]
is proved similarly. ■

Corollary 2.15. Let $T : V \rightarrow V$ a linear map. Let B and S be a basis. Then
\[m_{S,S}^T = m_{S,B}m_{B,B}^Tm_{B,S} = m_{B,S}^{-1}m_{B,B}^Tm_{B,S}. \]
3. Determinant and adjacent matrix

We recall that on the space of $n \times n$ matrices over F the determinant is given by

$$\det(A) = \sum_{\pi \in S_n} (-1)^{I(\pi)} \prod_{i=1}^{n} a_{i\pi(i)}.$$

Here S_n is the space of all permutation of the set $\{1, ..., n\}$ and

$$I(\pi) = \#\{i < j : \pi(i) > \pi(j)\}$$

is the number of inversions. It is easily checked that \det is multi-linear, antisymmetric and satisfies $\det(I) = 1$. Using the Gauss-elimination method one can then show that $\det(A) \neq 0$ if and only if A is invertible. We will use a different approach.

Definition 3.1. Given a matrix $A = (a_{ij})$ we denote by B_{ij} the matrix obtained by deleting the i and j-th column. We define

$$b_{ij} = (-1)^{i+j} \det(X_{ji})$$

Then $B = \text{adj}(A)$ is called the adjacent matrix to A.

Lemma 3.2. $A \text{adj}(A) = \det(A)I$.

Proof. Consider $C = A \text{adj}(A)$. Then we deduce from the well-known determinant expansion

$$c_{ii} = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} \det(X_{ij}) = \det(A).$$

For $i \neq k$ we get

$$c_{ik} = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} \det(X_{kj}) = \det(\tilde{A}_{ik})$$

Here \tilde{A} repeats the i-th column in the k-column. Thus $\det(\tilde{A}_{ik}) = 0$ by antisymmetry.

Corollary 3.3. If $\det(A) \neq 0$, then $A^{-1} = \det(A)^{-1} \text{adj}(A)$.

Lemma 3.4. Let F be \mathbb{R} or \mathbb{C} and A_j be $m \times m$ matrices such that

$$\sum_{k=0}^{n} A_k \lambda^k = 0$$

for all $\lambda \in F$. Then $A_0 = A_1 = \cdots = A_n = 0$.

1. TOPOLOGICAL VECTOR SPACES

Proof. Proof by induction $n = 0$. By assumption $A_0 = 0$. We assume the assertion is true n. Let $\sum_{k=0}^{n+1} A_k \lambda_k = 0$. Inserting $\lambda = 0$ we get $A_0 = 0$ and hence

$$\lambda(\sum_{k=0}^{n} A_{k+1} \lambda^k) = 0.$$

This for $\lambda \neq 0$ we must have

$$\sum_{k=0}^{n} A_{k+1} \lambda^k = 0$$

By continuity this also holds for $\lambda = 0$ and the induction hypothesis implies $A_1 = A_2 = \cdots = A_{n+1} = 0$.

For a polynomial $p(\lambda) = \sum_{k=0}^{n} a_k \lambda^k$ and a matrix A we define

$$p(A) = \sum_{k=0}^{n} a_k A^k.$$

THEOREM 3.5. Let A be an $m \times m$ matrix and

$$p_A(\lambda) = \det(\lambda I - A)$$

the characteristic polynomial. Then

$$p_A(A) = 0.$$

Proof. We know that

$$(\lambda I - A) \text{adj}(\lambda I - A) = \det(\lambda I - A)I = p_A(\lambda)I.$$

We write

$$\text{adj}(\lambda I - A) = \sum_{k=0}^{n-1} B_k \lambda^k$$

Let us write

$$p_A(\lambda) = \sum_{k=0}^{n} a_k \lambda^k.$$

Here $a_n = 1$. This gives

$$\sum_{k=0}^{n} a_k \lambda^k I = p_A(\lambda)I = (\lambda I - A) \text{adj}(\lambda I - A)$$

$$= (\lambda I - A) \sum_{k=0}^{n-1} B_k \lambda^k$$

$$= -AB_0 + \sum_{k=1}^{n} (B_{k-1} - AB_k) \lambda^k.$$
Comparing coefficients we get \(B_{n-1} = I, -AB_0 = a_0 \) and
\[
B_{k-1} - AB_k = a_k I
\]
for \(k = 1, \ldots, n-2 \). Multiplying with \(A^{k-1} \) we deduce
\[
A^k B_{k-1} - A^{k+1} B_k = a_k A^k.
\]
Therefore
\[
\sum_{k=0}^{n} a_k A^k = A^n - AB_0 + \sum_{k=0}^{n-1} (A^{k-1} B_{k-1} - A^k B_k) = A^n - A^n = 0.
\]

Definition 3.6. Let us consider the ideal
\[
I_A = \{ p \in \mathbb{C}[X] : p(A) = 0 \}
\]
of polynomials. Since the integral domain of polynomials admits a factorization algorithm there exists a polynomial \(m_A \) with minimal degree and leading coefficients 1 such that
\[
I_A = \mathbb{C}[X]m_A.
\]
In particular, the minimal polynomial divides the characteristic polynomial \(p_A \).

4. Eigenvalues and eigenvectors

Definition 4.1. Let \(T : V \rightarrow V \) be a linear map. A number \(\lambda \in F \) is called an eigenvalue if there exists \(v \neq 0 \) such that
\[
T(v) = \lambda v
\]
In this case \(v \) is called eigenvector. The space \(K_\lambda \) of eigenvectors is given by
\[
E_\lambda = \ker(T - \lambda \text{id}) .
\]

Example 4.2. On \(F^\mathbb{N} \) we define
\[
T(f)(n) = f(n + 1) .
\]
Then \(T(f) = \lambda f \) implies
\[
\lambda f(n) = f(n + 1)
\]
Therefore every eigenvector for \(T(f) = \lambda f \) is given by \(f(n) = \lambda^n f(0) \) with \(f(0) \neq 0 \). Note that for \(\lambda \neq 0 \) the function \(f_\lambda(n) = \lambda^n \) does not belong to the free vector space \(F(\mathbb{N}) \). For \(\lambda = 0 \) we must have \(0 = f(2) = f(3) = \cdots \). Hence on \(f \) given
by \(f(1) = 1 \) and 0 else is an eigenvector for \(T \). We may also consider the subspace \(\ell_2 \subset \mathbb{R}^N \) given by
\[
\ell_2 = \{ f : \mathbb{N} \to \mathbb{R} : \sum_{n} |f(n)|^2 < \infty \}.
\]
Then \(f_\lambda \in \ell_2 \) if and only if \(|\lambda| < 1\).

Lemma 4.3. Let \(F \in \{ \mathbb{C}, \mathbb{R} \} \), \(A \in M_n(F) \) and \(\lambda \) an eigenvalue. Then \(m_A(\lambda) = 0 \).

Proof. Let \(v \neq 0 \) such that \(A(v) = \lambda v \). Then \(A^k v = \lambda^k v \) implies
\[
0 = m(A)v = m(\lambda)v.
\]
Thus \(m(\lambda) = 0 \). \(\square \)

Proposition 4.4. Let \(V \) be a complex finite dimensional vector space of positive dimension. Let \(T : V \to V \) be a a linear map. Then \(T \) has an eigenvalue.

Proof. After fixing a basis, we may associate with \(T \) a matrix \(A \). Then \(p_A(\lambda) = \det(\lambda I - A) \) is a polynomial with leading coefficient \(\lambda^{\dim(V)} \). Thus \(\dim(V) > 0 \) implies with the fundamental theorem that there exists \(\lambda \) with \(p_A(\lambda) = 0 \). This implies \(\det(\lambda I - A) = 0 \) and hence there exists \(0 \neq v \in \ker(\lambda I - A) \). Using the transition matrix, we deduce that \(T \) has an eigenvector. \(\square \)

Remark 4.5. The eigenvalues are exactly the roots of the characteristic polynomial. Indeed, \(\lambda \) is an eigenvalue iff \(\ker(\lambda I - A) \neq 0 \) iff \(\det(\lambda I - A) = 0 \).

5. Jordan normal form

Definition 5.1. We say that \(A \) is similar to \(B \) if there exists an invertible map \(S \) such that \(A = S^{-1}BS \).

Theorem 5.2. Let \(A \in M_n(\mathbb{C}) \) a complex matrix with
\[
p_A(x) = (x - \lambda_1)^{r_1} \cdots (x - \lambda_p)^{r_p}
\]
and
\[
m_A(x) = (x - \lambda_1)^{s_1} \cdots (x - \lambda_p)^{s_p}.
\]
Then \(A \) is similar to a block matrix \(B \) with blocks
\[
B_i = \begin{pmatrix}
\lambda_i & 1 & 0 & 0 & \cdots \\
0 & \lambda_i & 1 & 0 & \cdots \\
& & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & \lambda_i & 1 \\
0 & \cdots & 0 & 0 & \lambda_i
\end{pmatrix}
\]
Here not more than s_i blocks occur.

Definition 5.3. Let $T : V \to V$ be a linear map. We define

$$\rho(T) = \{ \lambda \in \mathbb{C} : (\lambda I - T)^{-1} \text{ exists} \}$$

and the spectrum $\sigma(T) = \mathbb{C}\rho(T)$.

Remark 5.4. $A \in M_n(\mathbb{C})$. The $\lambda \in \sigma(A)$ iff $p_A(\lambda) = 0$ if $m_A(\lambda) = 0$.

Lemma 5.5. Let $A \in M_n(\mathbb{C})$. Let $\lambda \in \sigma(A)$. Then the sequence of subspaces

$$M^j = \ker(A - \lambda)^j$$

is ordered by inclusion. Moreover, the exists a minimal k such that $M^k = M^{k+1}$.

Proof. Consider $d_j = \dim(M^j)$. Then d_j are integers and (d_j) is bounded by n. Thus $d = \lim_j d_j$ converges. Using $\varepsilon = \frac{1}{2}$ we see that for some $k \geq k_0$ we must have $d_j = d$. Hence, we define $k = \min\{j : d_j = d\}$.

Definition 5.6. For two subspace V and W of \mathbb{C}^n we write $V \oplus W = \mathbb{C}^n$ if $V + W = \mathbb{C}^n$ and $V \cap W = \{0\}$.

Lemma 5.7. $M^k \oplus \text{rg}(A - \lambda)^k = \mathbb{C}^n$ and $\text{rg}(A - \lambda)^j = \text{rg}(A - \lambda)^k$ for all $j \geq k$.

Proof. Note that

$$n = \dim(\ker(\lambda - A)^j) + \dim(\text{rg}(\lambda - A)^j))$$

Moreover, the sequence $W_j = \text{rg}((A - \lambda)^j)$ is decreasing. Thus $d_j = d_k$ for all $j \geq k$ implies $\dim(\text{rg}(\lambda - A)^j)) = \dim(\text{rg}(\lambda - A)^k))$ for all $j \geq k$. Thus $W_j = W_k$.

Now, let $v \in \mathbb{C}^n$. Define $w = (A - \lambda)^k v$. Note that $(A - \lambda)(W_k) = (A - \lambda)^k(A - \lambda)(\mathbb{C}^n) \subset W_k$. Moreover, $\dim(A - \lambda)(W_k) = \dim W_{k+1} = \dim W_k$ implies that $\lambda I - A$ is injective on W_k. Hence $(A - \lambda)^k$ is injective and surjective when restricted to W_k. Therefore we find $v_0 \in W_k$ such that $(A - \lambda)^k(v_0) = w$. Equivalently $v_0 - v \in \ker((A - \lambda)^k)$. Hence

$$v = v - v_0 + v_0 \in M^k + W_k.$$

This implies

$$\mathbb{C}^n = M^k + W_k$$

Using the dimension formula we must have $\dim(M^k \cap W_k) = 0$.

\[\square\]
In the following we use \(\sigma(A) = \{\lambda_1, \ldots, \lambda_p\} \)
\[
M_i = \bigcap_l \ker((A - \lambda_l)^l), \quad W_i = \bigcup_l \text{rg}((A - \lambda_l)^l).
\]

We denote by \(k_i \) the smallest integer from Lemma 5.7.

Lemma 5.8. \(i \neq j \) implies \(M_i \subset W_j \).

Proof. Let us show that \((A - \lambda_j)\) leaves \(M_i \) invariant. Indeed, let \(x \in M_i \).

Then
\[
(A - \lambda_j)(x) = (\lambda_j - \lambda_i)(x) + (A - \lambda_i)(x) \in M_i.
\]

Recall that for \(x \in \ker((A - \lambda)^k) \) we know that
\[
(A - \lambda)^k(\lambda_i I - A)x = \lambda(\lambda_i I - A)(A - \lambda)^k(x) = 0.
\]

Thus we get \((\lambda_j - A)(M_i) \subset M_i\). Now, we want to show
\[
\ker(\lambda_j - A) \cap M_i = \{0\}.
\]

Indeed, let \(x \in \ker((\lambda_j - A)) \cap M_i \). Then we have
\[
(\lambda_j - \lambda_i)^k(x) = ((A - \lambda_i) - (A - \lambda_j))^k(x)
\]
\[
= (A - \lambda_i)^k(x) + \sum_{l=1}^{k-1} \binom{k}{l} (-1)^l ((A - \lambda_i))^{k-l}(A - \lambda_j)^l(x) = 0.
\]

Therefore \((A - \lambda_j)\) is an isomorphism when restricted to \(M_i \). Thus for every \(x \in M_i \) we may find \(y \in M_i \) such that
\[
x = (A - \lambda_j)^k(y) \in W_i.
\]

The assertion is proved.

Lemma 5.9. \(\mathbb{C}^n = M_1 \oplus M_2 \oplus \cdots \oplus M_p \).

Proof. We have
\[
\mathbb{C}^n = M_1 \oplus W_1
\]

Every element \(x \in W_1 \) can be written in a unique way \(x = z + y, \ z \in W_2, \ y \in M_2 \).

Since \(y \in M_2 \), we get \(z \in W_2 \cap W_1 \):
\[
W_1 = W_1 \cap W_2 \oplus M_2.
\]

Hence
\[
\mathbb{C}^n = M_1 \oplus M_2 \oplus W_1 \cap W_2.
\]
Since $M_3 \subset W_1 \cap W_2$, we continue and get
\[\mathbb{C}^n = M_1 \oplus \cdots \oplus M_p \oplus W_1 \cap \cdots \cap W_p. \]

Let $W = \bigcap_i W_i$. Note that
\[(A - \lambda_j)(W_i) \subset [(\lambda_j - \lambda_i)W_i + (A - \lambda_i)(W_i)] \subset W_i. \]
Therefore $(A - \lambda_j)$ maps W into W for all $j = 1, \ldots, p$. In particular $A(W) \subset W$.

Let us denote the induced linear map on W by T. If λ is an eigenvalue for T, then λ is an eigenvalue for A. Thus $\sigma(T) \subset \{\lambda_1, \ldots, \lambda_p\}$. However, for every $\lambda = \lambda_i$ every eigenvector x is contained in $\ker((A - \lambda_i)^k)$. This yields $x \in M_i \cap W \subset M_i \cap W = \{0\}$. Therefore we have shown that T has no eigenvalues. According to Proposition 4.4 we must have $\dim(W) = 0$.

Lemma 5.10. The dimensions $k_i = \dim(M_i)$ coincide with degree s_i corresponding to λ_i in the minimal polynomial.

Proof. Let us recall that $M_i = \ker((A - \lambda_i)^{k_i})$ and hence
\[(A - \lambda_i)^{k_i}(M_i) = 0. \]

Since \mathbb{C}^n is a direct sum of the M_i’s and the $(A - \lambda_i)^{k_i}$’s commute we get
\[(A - \lambda_1)^{k_1} \cdots (A - \lambda_p)^{k_p}(\mathbb{C}^n) = \{0\}. \]

This implies that the minimal polynomial m_A divides $q(x) = \prod_{i=1}^p (\lambda_i - x)$. Thus $s_i \leq k_i$ for all $i = 1, \ldots, p$. Suppose there exists i such that $s_i < k_i$. Then there exists an $0 \neq x \in M_i$ such that $(A - \lambda_i)^{s_i}(x) \neq 0$. We have shown in Lemma 5.8 that that for every $j \neq i$ the map $(A - \lambda_j)$ maps M_i to M_i and is injective. Therefore $\prod_{j \neq i}(A - \lambda_j)^{s_j}$ is injective on M_i. We get
\[m_A(A)(x) = \prod_{j \neq i}(A - \lambda_j)^{s_j}(A - \lambda_i)^{s_i}x \neq 0. \]

Thus $m_A(A) \neq 0$ and this contradiction concludes the proof.

The next result concludes our proof of the existence of the Jordan normal form.

Proposition 5.11. Let $\lambda_i \in \sigma(A)$ and for $j = 1, \ldots, k = s_i$ we define
\[\Delta_j = \dim(ker(A - \lambda_i)^j) - \dim(ker(A - \lambda_i)^{j-1}) \]
and $\partial_k = \Delta_k$ and
\[\partial_j = \Delta_j - \Delta_{j+1}. \]
Then the restriction of A to M_i is similar to a direct sum of ∂_j Jordan blocks of length j.

Proof. In the following $\lambda = \lambda_i$ and $k = s_i$. We consider $M = \ker((A - \lambda)^k))$. We decompose

$$M = \ker((A - \lambda)^{k-1}) \oplus \ker((A - \lambda)^k)/\ker((A - \lambda)^{k-1})$$

Let $[b_1], \ldots, [b_m]$ be a basis for the quotient space. Note that $m = \Delta_k = \partial_k$. Let us show that

$$S = \{(A - \lambda)^j(b_i) : 0 \leq j < k, 1 \leq i \leq m\}$$

is a system of linear independent vectors. Indeed, assume

$$\sum_{ij} a_{ij}(A - \lambda)^j(b_i) = 0$$

Since $(A - \lambda)^{k-1}(A - \lambda)^j = 0$ for $j \geq 1$, we get

$$\sum_{i=1}^{m} a_{i0}(A - \lambda)^{k-1}(b_i) = 0.$$

This implies $\sum_i a_{i0}b_i \in \ker((A - \lambda)^{k-1})$. By linear independence of the $[b_1], \ldots, [b_m]$ we deduce $a_{i0} = 0$ for $i = 1, \ldots, m$. Similarly, we assume

$$\sum_{i=1}^{m} \sum_{j=1}^{k-1} a_{ij}(A - \lambda)^j(b_i) = 0$$

and deduce $a_{11}, \ldots, a_{m1} = 0$. Inductively, we find $a_{ij} = 0$. For a fixed $1 \leq i \leq m$ we consider

$$x_j = (A - \lambda)^j(b_i).$$

Note that

$$A(x_j) = (A - \lambda)(x_j) + \lambda x_j = x_{j+1} + \lambda x_j$$

for $j = 0, \ldots, k - 1$ but $(A - \lambda)(x_{k-1}) = (A - \lambda)^k(b_1) = 0$. Hence x_{k-1} is an eigenvector. We see that A leaves

$$F_i = \text{span}\{x_0, \ldots, x_{k-1}\}$$
invariant. In this basis we finally find the Jordan block

\[
A|_{F_i} \cong \begin{pmatrix}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
\vdots & & & \\
0 & \cdots & 0 & \lambda
\end{pmatrix}.
\]

Using the reversed order \(v_{(i-1)m+j} = x_{k-j}\) we obtain (finally) a Jordan block and a basis \((v_j)_{1 \leq j \leq mk}\) for \(m\) blocks of length \(k\). Now, we proceed inductively and consider \(\ker((A - \lambda)^{k-1}) / \ker((A - \lambda)^{k-1})\). Then vectors \(c_1, \ldots, c_m = [(A - \lambda)(b_i)]\) are already linearly independent. Thus we may complete this system with linearly independent vectors \([B_i], \ldots, [B_l]\) where

\[
l = \Delta_{k-1} - \Delta_k = \partial k.
\]

The descendants of the \(B_i\) form \(l\) Jordan normal blocks of size \(k-1\). In general, we have

\[
\partial_j = \Delta_j - (\partial_k + \cdots + \partial_{j+1})
\]

many Jordan blocks of size \(j\). For example, we have

\[
\partial_k + \partial_{k-1} = \Delta_k + \Delta_{k-1} - \Delta_k = \Delta_{k-1}.
\]

By induction, we get

\[
\partial_k + \cdots + \partial_{j+1} = \Delta_{j+1}.
\]

Our claim is proved.

\[\blacksquare\]

Remark 5.12. The JNF is uniquely determined by the dimensions \(\partial_j\). It is unique up to permutation of the blocks.

Corollary 5.13. \(\Delta_k \leq \Delta_j\) for \(j = 1, \ldots, k\) and

\[
k_i = \min\{j : \dim(\ker(A - \lambda_i)^j) = \dim(\ker(A - \lambda_i)^{j+})\}.
\]

Proof. In fact we have seen that for \(b_1, \ldots, b_m\) such that \([b_i] = \ker((A - \lambda)^k) / \ker((A - \lambda)^{k-1})\) are linearly independent we have \((A - \lambda)^{k-j}(b_i)\) are linearly independent. This yields \(\Delta_k \leq \Delta_k\). Since \(\Delta_k > 1\) by definition, we deduce \(d_{j+1} > d_j\) for all \(j = 1, \ldots, k-1\). \[\blacksquare\]
Let us consider an example

$$A = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

We have $A(x) = \det(A - x)^2 = (2 - x)^5$. Thus the eigen value 2. Consider

$$(A - 2)^2 = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = 0.$$

The minimal polynomial is $m_A(x) = (2 - x)^2$. The kernel of $(A - 2)$ is the span\{e_1, e_2 - e_3, e_4 - e_5\}. Thus A is similar to

$$B = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}.$$

In fact I constructed A as

$$A = S^{-1}BS$$

where

$$S = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$