Riesz transforms

Marius Junge

University of Illinois at Urbana-Champaign

Alba Julia-Joint meeting AMS-Rumanian Society- June 2013
Riesz transforms

Marius Junge

University of Illinois at Urbana-Champaign

Alba Julia-Joint meeting AMS-Rumanian Society- June 2013
joint work with Tao Mei and Javier Parcet
Riesz transforms in Harmonic Analysis and Operator Algebras

Plan:

- General semigroups and derivations
- Cocycles on groups and their derivations
- Possible use in operator algebras
- Riesz transform estimates
- A new perspective for classical (Fourier) multipliers
Riesz transforms in Harmonic Analysis and Operator Algebras

Plan:
Riesz transforms in Harmonic Analysis and Operator Algebras

Plan:

- General semigroups and derivations
Plan:

- General semigroups and derivations
- Cocycles on groups and their derivations
Riesz transforms in Harmonic Analysis and Operator Algebras

Plan:

- General semigroups and derivations
- Cocycles on groups and their derivations
- Possible use in operator algebras
Plan:

- General semigroups and derivations
- Cocycles on groups and their derivations
- Possible use in operator algebras
- Riesz transform estimates
Plan:

- General semigroups and derivations
- Cocycles on groups and their derivations
- Possible use in operator algebras
- Riesz transform estimates
- A new perspective for classical (Fourier) multipliers
N is a (semi-) finite von Neumann algebra, with trace τ;

$T_t = e^{-tA}$ is a family of completely positive unital trace preserving, and selfadjoint maps;

The gradient form (carre du champs) is defined as

$\Gamma(x, y) = A(x^* y) + x^* A(y) - A(x^* y)$.

Sauvageot-Cipriani: In general $\Gamma(x, x) \in \text{dom}(A_1/2)$.

In von Neumann algebras: One should require $\Gamma(x, x) \in L_1(N)$ for $x \in \text{dom}(A_1/2)$.

But that is not true for Sierpinski gasket!

(Meyer's problem) For which A do we have $\|\Gamma(x, x)\|_1/2 \sim \|A_1/2 x\|_p$?

Motivation \mathbb{R}^n: Then $\nabla |\Delta|^{-1/2}$ is bounded.

Meyer showed Riesz transform estimate for infinite dimensional Ornstein-Uhlenbeck semigroup.
∗ N is a (semi-) finite von Neumann algebra, with trace τ;
\[N \text{ is a (semi-)finite von Neumann algebra, with trace } \tau; \]
\[T_t = e^{-tA} \text{ is a family of completely positive unital trace preserving, and } selfadjoint \text{ maps;} \]
• N is a (semi-) finite von Neumann algebra, with trace τ;
• $T_t = e^{-tA}$ is a family of completely positive unital trace preserving, and selfadjoint maps;
• The gradient form (carré du champs) is defined as

$$2\Gamma(x, y) = A(x^*)y + x^*A(y) - A(x^*y).$$
* N is a (semi-) finite von Neumann algebra, with trace τ;
* $T_t = e^{-tA}$ is a family of completely positive unital trace preserving, and selfadjoint maps;
* The gradient form (carré du champs) is defined as
\[
2\Gamma(x, y) = A(x^*)y + x^*A(y) - A(x^*y).
\]
* Sauvageot-Cipriani: In general $\Gamma(x, x) \in \text{dom}(A^{1/2})^*$.
• N is a (semi-) finite von Neumann algebra, with trace τ;
• $T_t = e^{-tA}$ is a family of completely positive unital trace preserving, and selfadjoint maps;
• The gradient form (carré du champs) is defined as

\[2\Gamma(x, y) = A(x^*)y + x^*A(y) - A(x^*y). \]

• Sauvageot-Cipriani: In general $\Gamma(x, x) \in \text{dom}(A^{1/2})^*$.
• In von Neumann algebras: One should require $\Gamma(x, x) \in L_1(N)$ for $x \in \text{dom}(A^{1/2})$.

Motivation

\mathbb{R}^n: Then $\nabla|\Delta|^{-1/2}$ is bounded.

Meyer showed Riesz transform estimate for infinite dimensional Ornstein-Uhlenbeck semigroup.
• N is a (semi-) finite von Neumann algebra, with trace τ;
• $T_t = e^{-tA}$ is a family of completely positive unital trace preserving, and selfadjoint maps;
• The gradient form (carré du champs) is defined as

$$2\Gamma(x, y) = A(x^*)y + x^*A(y) - A(x^*y).$$

• Sauvageot-Cipriani: In general $\Gamma(x, x) \in \text{dom}(A^{1/2})^*$.
• In von Neumann algebras: One should require $\Gamma(x, x) \in L_1(N)$ for $x \in \text{dom}(A^{1/2})$-But that is not true for Sierpinski gasket!
* N is a (semi-) finite von Neumann algebra, with trace \(\tau \);
* \(T_t = e^{-tA} \) is a family of completely positive unital trace preserving, and \textit{selfadjoint} maps;
* The gradient form (carré du champs) is defined as

\[2\Gamma(x, y) = A(x^*)y + x^*A(y) - A(x^*y). \]

* Sauvageot-Cipriani: In general \(\Gamma(x, x) \in \text{dom}(A^{1/2})^* \).
* In von Neumann algebras: One should require \(\Gamma(x, x) \in L_1(N) \) for \(x \in \text{dom}(A^{1/2}) \)-But that is not true for Sierpinski gasket!
* (Meyer’s problem) For which \(A \) do we have

\[\| \Gamma(x, x)^{1/2} \|_p \sim \| A^{1/2}x \|_p ? \]
• N is a (semi-)finite von Neumann algebra, with trace τ;
• $T_t = e^{-tA}$ is a family of completely positive unital trace preserving, and selfadjoint maps;
• The gradient form (carré du champs) is defined as
 \[
 2\Gamma(x, y) = A(x^*)y + x^*A(y) - A(x^*y).
 \]
• Sauvageot-Cipriani: In general $\Gamma(x, x) \in \text{dom}(A^{1/2})^*$.
• In von Neumman algebras: One should require $\Gamma(x, x) \in L_1(N)$ for $x \in \text{dom}(A^{1/2})$-But that is not true for Sierpinski gasket!
• (Meyer’s problem) For which A do we have
 \[
 \|\Gamma(x, x)^{1/2}\|_p \sim \|A^{1/2}x\|_p ?
 \]
• Motivation \mathbb{R}^n: Then $\nabla|\Delta|^{-1/2}$ is bounded.
* N is a (semi-) finite von Neumann algebra, with trace \(\tau \);
* \(T_t = e^{-tA} \) is a family of completely positive unital trace preserving, and selfadjoint maps;
* The gradient form (carré du champs) is defined as

\[
2\Gamma(x, y) = A(x^*)y + x^*A(y) - A(x^*y) .
\]

* Sauvageot-Cipriani: In general \(\Gamma(x, x) \in \text{dom}(A^{1/2})^* \).
* In von Neumann algebras: One should require \(\Gamma(x, x) \in L_1(N) \) for \(x \in \text{dom}(A^{1/2}) \)-But that is not true for Sierpinski gasket!
* (Meyer’s problem) For which \(A \) do we have

\[
\|\Gamma(x, x)^{1/2}\|_p \sim \|A^{1/2}x\|_p ?
\]

* Motivation \(\mathbb{R}^n \): Then \(\nabla|\Delta|^{-1/2} \) is bounded.
* Meyer showed Riesz transform estimate for infinite dimensional Ornstein-Uhlenbeck semigroup.
Prop: (JRS) Let T be a completely positive unital trace preserving map. Then
Prop: (JRS) Let T be a completely positive unital trace preserving map. Then

i) There exists $N \subset M$ and unitaries such that

$$e^{-t(I-T)}(x) = E_N(u_t^* x u_t)$$
Prop: (JRS) Let T be a completely positive unital trace preserving map. Then

i) There exists $N \subset M$ and unitaries such that

$$e^{-t(I-T)}(x) = E_N(u_t^*xu_t)$$

ii) There exists ξ in M such that

$$\Gamma_{(I-T)}(x,y) = E([x,\xi]^*[y,\xi]).$$
Corollary

(Sauvageout-Cipriani/Davies Lindsay) The $N \cap \text{dom}_2(A^{1/2})$ is a $^*\text{-algebra}$.
Corollary

(Sauvageout-Cipriani/Davies Lindsay) The $N \cap \text{dom}_2(A^{1/2})$ is a \ast-algebra.

Proof: Let $\delta(x) = i[x, \xi]$ and $A = (I - T), \ldots$
Corollary

(Sauvageout-Cipriani/Davies Lindsay) The $N \cap \text{dom}_2(A^{1/2})$ is a *-algebra.

Proof: Let $\delta(x) = i[x, \xi]$ and $A = (I - T)$, then

$$
\| A^{1/2}(xy) \|_2 = \tau(\Gamma(xy, xy))^{1/2} = \tau(\delta(xy)^* \delta(xy))^{1/2}
$$

$$
= \| \delta(xy) \|_2
$$

$$
\leq \| x \|_\infty \| \delta(y) \|_2 + \| \delta(x) \|_2 \| y \|_\infty
$$

$$
= \| x \|_\infty \| A^{1/2}y \|_2 + \| A^{1/2}x \|_2 \| y \|_\infty.
$$
Corollary

(Sauvageout-Cipriani/Davies Lindsay) The \(N \cap \text{dom}_2(A^{1/2}) \) is a *-algebra.

Proof: Let \(\delta(x) = i[x, \xi] \) and \(A = (I - T) \), then

\[
\| A^{1/2}(xy) \|_2 = \tau(\Gamma(xy, xy))^{1/2} = \tau(\delta(xy)^\ast \delta(xy))^{1/2} \\
= \| \delta(xy) \|_2 \\
\leq \| x \|_\infty \| \delta(y) \|_2 + \| \delta(x) \|_2 \| y \|_\infty \\
= \| x \|_\infty \| A^{1/2}y \|_2 + \| A^{1/2}x \|_2 \| y \|_\infty.
\]

The same inequality remain true if we passe to the limit:

\[
A = \lim_{\alpha} \frac{I - T_\alpha}{\alpha}.
\]

Rem.: Same remains true for \(N \cap \text{dom}_p(A^{1/2}) \) which contains \(T_t(N) \) by \(H^\infty \)-calculus.
Discrete groups

\[N = \mathbb{L}(G) \]

with trace \[\tau(\sum g a_g \lambda(g)) = a_1. \]

Special function \[T(\lambda(g)) = e^{-t \psi(g)} \lambda(g) \]

where \(\psi \) is a conditionally negative function.

Recall (Schoenberg's theorem) that \(\psi \) is conditionally negative, i.e.
\[\sum g a_g = 0 \Rightarrow \sum gh \bar{a}_g a_h \psi(g - 1 h) \leq 0 \]

if and only if every \(\phi_t \) is positive definite.

\(L^p(N, \tau) \) is the completion of \(N \) with respect to \[\|x\|_p = \left[\tau(|x|^p) \right]^{1/2} \]
\[N = L(G) \text{ with trace } \tau(\sum_g a_g \lambda(g)) = a_1. \]
Discrete groups

\[N = L(G) \text{ with trace } \tau(\sum g a_g \lambda(g)) = a_1. \]

\[\text{Special } T_t(\lambda(g)) = e^{-t\psi(g)} \lambda(g) \text{ where } \psi \text{ is a conditionally negative function.} \]
Discrete groups

• \(N = L(G) \) with trace \(\tau(\sum_g a_g \lambda(g)) = a_1 \).

• Special \(T_t(\lambda(g)) = e^{-t\psi(g)}\lambda(g) \) where \(\psi \) is a conditionally negative function.

• Recall (Schoenberg’s theorem) that \(\psi \) is conditionally negative, i.e.

\[
\sum_g a_g = 0 \quad \Rightarrow \quad \sum_{gh} \overline{a_g} a_h \psi(g^{-1} h) \leq 0
\]

if and only if every \(\varphi_t \) is positive definite.
Discrete groups

\[N = L(G) \text{ with trace } \tau(\sum_g a_g \lambda(g)) = a_1. \]

\[\text{Special } T_t(\lambda(g)) = e^{-t\psi(g)}\lambda(g) \text{ where } \psi \text{ is a conditionally negative function.} \]

\[\text{Recall (Schoenberg's theorem) that } \psi \text{ is conditionally negative, i.e.} \]

\[\sum_g a_g = 0 \quad \Rightarrow \quad \sum_{gh} \bar{a}_g a_h \psi(g^{-1}h) \leq 0 \]

if and only if every \(\varphi_t \) is positive definite.

\[L_p(N, \tau) \text{ is the completion of } N \text{ with respect to} \]

\[\|x\|_p = [\tau(|x|^p)]^{1/2} \]
The derivation is not unique
The derivation is **not unique**

As part of Schoenberg’s proof one constructs a Hilbert space H_ψ as the completion of the *real* Hilbert $\sum_g a_g \lambda(g) : \sum_g a_g = 0, a_g \in \mathbb{R}$ with inner product

$$(\sum_g a_g \lambda(g), \sum_g b_g \lambda(g)) = \sum_{g,h} a_g b_h (-\psi)(g^{-1}h).$$
The derivation is not unique

As part of Schoenberg’s proof one constructs a Hilbert space H_ψ as the completion of the real Hilbert space $\sum_g a_g \lambda(g) : \sum_g a_g = 0, a_g \in \mathbb{R}$ with inner product

$$ (\sum_g a_g \lambda(g), \sum_g b_g \lambda(g)) = \sum_{g,h} a_g b_h (-\psi)(g^{-1} h) . $$

Remark: The free dilation from (JRS) will take place in $\Gamma_0(L_2(0, \infty) \otimes H_\varphi) \rtimes G$, where $\Gamma_0(H)$ is the von Neumann algebra generated by semicircular random variables $s(h)$ (Voiculescu’s functor).
The derivation is not unique

As part of Schoenberg’s proof one constructs a Hilbert space H_ψ as the completion of the real Hilbert space $\sum_g a_g \lambda(g) : \sum_g a_g = 0, a_g \in \mathbb{R}$ with inner product

$$\left(\sum_g a_g \lambda(g), \sum_g b_g \lambda(g) \right) = \sum_{g,h} a_g b_h (-\psi) (g^{-1} h).$$

Remark: The free dilation from (JRS) will take place in $\Gamma_0(L_2(0,\infty) \otimes H_\varphi) \rtimes G$, where $\Gamma_0(H)$ is the von Neumann algebra generated by semicircular random variables $s(h)$ (Voiculescu’s functor).

Remark: More familiar is the gaussian measure space construction $L_\infty(\Omega, \mu) \rtimes G$ generated by unitaries

$$\Gamma_1(H) = \{ e^{i B(h)} : B(h) \text{ centered, gaussian with variance } \|h\|^2 \}$$
Homomorphisms

For applications in harmonic analysis we use the family of group homomorphisms $\pi_t: G \to H \phi \rtimes \alpha$:

$$\pi_t(g) = (tb(g), \lambda(g)),$$

where $b(g) = (\delta e - \delta g) + N \psi \in H \phi$ is the canonical cocycle.

Let $T_{\Delta}t(\lambda(\xi)) = e^{-t\|\xi\|^2}$ be the heat semigroup on (the dual of) \mathbb{R}^n (equipped with the discrete topology).

Then $T_{\Delta}t(\lambda(\pi_1(g))) = e^{-t\psi(g)}\lambda(\pi_1(g))$.

In other words: Semigroups for discrete groups are restrictions of classical heat semigroups to semidirect products.

Similarly $\rho(\lambda(g)) = e^{iB(b(g))}\lambda(g)$ is a trace preserving \ast-homomorphism from $L(G)$ to $\Gamma_1(H \phi \rtimes G)$.

Application of dilation technique (also Dabrowski): Let G be a discrete weakly amenable group G with Haagerup property, then $L(G)$ is strongly solid.
Homomorphisms

For applications in harmonic analysis we use the family of group homomorphisms \(\pi_t : G \to H_\varphi \rtimes_\alpha G \)

\[
\pi_t(g) = (tb(g), \lambda(g)),
\]

where \(b(g) = (\delta_e - \delta_g) + N_\psi \in H_\varphi \) is the canonical cocycle.
For applications in harmonic analysis we use the family of group homomorphisms $\pi_t : G \to H_\varphi \rtimes_\alpha G$

$$\pi_t(g) = (tb(g), \lambda(g)),$$

where $b(g) = (\delta_e - \delta_g) + N_\psi \in H_\varphi$ is the canonical cocycle.

Let $T^\Delta_t(\lambda(\xi)) = e^{-t\|\xi\|^2} \lambda(\xi)$ be the heat semigroup on (the dual of) \mathbb{R}^n (equipped with the discrete topology).
For applications in harmonic analysis we use the family of group homomorphisms \(\pi_t : G \to H_\varphi \rtimes_{\alpha} G \)

\[
\pi_t(g) = (tb(g), \lambda(g)),
\]

where \(b(g) = (\delta_e - \delta_g) + N_\psi \in H_\varphi \) is the canonical cocycle.

Let \(T_t^\Delta(\lambda(\xi)) = e^{-t\|\xi\|^2} \lambda(\xi) \) be the heat semigroup on (the dual of) \(\mathbb{R}^n \) (equipped with the discrete topology). Then

\[
T_t^\Delta(\lambda(\pi_1(g))) = e^{-t\psi(g)}\lambda(\pi_1(g)).
\]

In other words: Semigroups for discrete groups are restrictions of classical heat semigroups to semidirect products.
For applications in harmonic analysis we use the family of group homomorphisms $\pi_t : G \to H_\varphi \rtimes_\alpha G$

$$\pi_t(g) = (tb(g), \lambda(g)),$$

where $b(g) = (\delta_e - \delta_g) + N_\psi \in H_\varphi$ is the canonical cocycle.

Let $T_t^\Delta(\lambda(\xi)) = e^{-t\|\xi\|^2_2} \lambda(\xi)$ be the heat semigroup on (the dual of) \mathbb{R}^n (equipped with the discrete topology). Then

$$T_t^\Delta(\lambda(\pi_1(g))) = e^{-t\psi(g)} \lambda(\pi_1(g)).$$

In other words: Semigroups for discrete groups are restrictions of classical heat semigroups to semidirect products.

Similarly $\rho(\lambda(g)) = e^{iB(b(g))} \lambda(g)$ is a trace preserving *-homomorphism from $L(G)$ to $\Gamma_1(H_\varphi) \rtimes G$.

Homomorphisms

- For applications in harmonic analysis we use the family of group homomorphisms $\pi_t : G \to H_\varphi \rtimes_\alpha G$

$$\pi_t(g) = (tb(g), \lambda(g)),$$

where $b(g) = (\delta_e - \delta_g) + N_\psi \in H_\varphi$ is the canonical cocycle.

- Let $T_t^\Delta(\lambda(\xi)) = e^{-t\|\xi\|^2_2} \lambda(\xi)$ be the heat semigroup on (the dual of) \mathbb{R}^n (equipped with the discrete topology). Then

$$T_t^\Delta(\lambda(\pi_1(g))) = e^{-t\psi(g)} \lambda(\pi_1(g)).$$

In other words: Semigroups for discrete groups are restrictions of classical heat semigroups to semidirect products.

- Similarly $\rho(\lambda(g)) = e^{iB(b(g))} \lambda(g)$ is a trace preserving *-homomorphism from $L(G)$ to $\Gamma_1(H_\varphi) \rtimes G$.

For applications in harmonic analysis we use the family of group homomorphisms $\pi_t : G \to H_\varphi \rtimes_\alpha G$

$$\pi_t(g) = (tb(g), \lambda(g)),$$

where $b(g) = (\delta_e - \delta_g) + N_\psi \in H_\varphi$ is the canonical cocycle.

Let $T_t^\Delta(\lambda(\xi)) = e^{-t\|\xi\|_2^2} \lambda(\xi)$ be the heat semigroup on (the dual of) \mathbb{R}^n (equipped with the discrete topology). Then

$$T_t^\Delta(\lambda(\pi_1(g))) = e^{-t\psi(g)} \lambda(\pi_1(g)).$$

In other words: Semigroups for discrete groups are restrictions of classical heat semigroups to semidirect products.

Similarly $\rho(\lambda(g)) = e^{iB(b(g))} \lambda(g)$ is a trace preserving *-homomorphism from $L(G)$ to $\Gamma_1(H_\varphi) \rtimes G$.

Application of dilation technique (also Dabrowski): Let G be a discrete weakly amenable group G with Haagerup property, then $L(G)$ is strongly solid.
$G = \mathbb{R}^n$, \nabla (f) = (\frac{d}{dx}1, \ldots, \frac{d}{dx}n)(f);
\|\nabla|\Delta|^{-1/2}\|_{L^p(\mathbb{R}^n)} \rightarrow L^p(\mathbb{R}^n;\ell^2) \| \leq c(p)

is the classical Riesz transform.

The gaussian measure space derivation is given by
$\delta(\lambda(g)) = B(b(g)) \lambda(g) \in \cap_{p<\infty} L^p(L^\infty(\Omega,\mu) \cdot G)

The Lebesgue space derivative $b(g)(x) = (b(g), x)$ is only locally integrable in \mathbb{R}^n and ugly when considered with respect to the Haar measure of $\hat{\mathbb{R}}^n$ discrete.
\(G = \mathbb{R}^n, \nabla(f) = \left(\frac{d}{dx_1}, \ldots, \frac{d}{dx_n} \right)(f); \)

\[
\|\nabla|\Delta|^{-1/2} : L_p(\mathbb{R}^n) \to L_p(\mathbb{R}^n; \ell_2)\| \leq c(p)
\]

is the classical Riesz transform.
$G = \mathbb{R}^n$, $\nabla (f) = \left(\frac{d}{dx_1}, \ldots, \frac{d}{dx_n} \right)(f)$;

$$\left\| \nabla|\Delta|^{-1/2} : L_p(\mathbb{R}^n) \to L_p(\mathbb{R}^n; \ell_2) \right\| \leq c(p)$$

is the classical Riesz transform.

$\delta(\lambda(g)) = B(b(g))\lambda(g) \in \bigcap_{p<\infty} L_p(L_\infty(\Omega, \mu) \rtimes G)$.
$G = \mathbb{R}^n$, $\nabla(f) = (\frac{d}{dx_1}, \ldots, (\frac{d}{dx_n})(f)$;

$$\|\nabla|\Delta|^{-1/2} : L_p(\mathbb{R}^n) \to L_p(\mathbb{R}^n; l_2)\| \leq c(p)$$

is the classical Riesz transform.

The gaussian measure space derivation is given by

$$\delta(\lambda(g)) = B(b(g))\lambda(g) \in \cap_{p<\infty} L_p(L_\infty(\Omega, \mu) \times G).$$

The Lebesgue space derivative $b(g)(x) = (b(g), x)$ is only locally integrable in \mathbb{R}^n and ugly when considered with respect to the Haar measure of $(\mathbb{R}^n_{\text{discrete}})$.
Riesz transforms

Definition: Recall that \(A(\lambda(g)) = \psi(g)\lambda(g) \) is the generator.
Riesz transforms

Definition: Recall that $A(\lambda(g)) = \psi(g)\lambda(g)$ is the generator. The Riesz transform is the partial isometry

$$V = \delta A^{-1/2} : L_2(L(G)) \to L_2(L_\infty(\Omega) \rtimes G) .$$
Riesz transforms

Definition: Recall that $A\left(\lambda(g)\right) = \psi(g)\lambda(g)$ is the generator. The **Riesz** transform is the partial isometry

$$V = \delta A^{-1/2} : L_2(L(G)) \to L_2(L_\infty(\Omega) \rtimes G).$$

Recall $L_2(LG) = \ell_2(G)$, $L_2(L_\infty(\Omega) \rtimes G) = L_2(\Omega) \otimes \ell_2(G)$.

In particular, if $\Gamma(x, x)$ and $[A^{1/2}x]$ are bounded and $A^{-1/2}$ is compact, then $[V, x]$ is a compact operator.
Definition: Recall that $A(\lambda(g)) = \psi(g)\lambda(g)$ is the generator. The Riesz transform is the partial isometry

\[V = \delta A^{-1/2} : L_2(L(G)) \rightarrow L_2(L_\infty(\Omega) \rtimes G). \]

Recall $L_2(LG) = \ell_2(G)$, $L_2(L_\infty(\Omega) \rtimes G) = L_2(\Omega) \otimes \ell_2(G)$.

Recall that G has the Haagerup property if there exists conditionally negative ψ such that A_ψ^{-1} is compact on $\ell_2(G) = L_2(LG)$.
Riesz transforms

Definition: Recall that \(A(\lambda(g)) = \psi(g)\lambda(g) \) is the generator. The Riesz transform is the partial isometry

\[
V = \delta A^{-1/2} : L_2(L(G)) \to L_2(L_\infty(\Omega) \rtimes G).
\]

Recall \(L_2(LG) = \ell_2(G), \) \(L_2(L_\infty(\Omega) \rtimes G) = L_2(\Omega) \otimes \ell_2(G). \)

\(\blacklozenge \) Recall that \(G \) has the Haagerup property if there exists conditionally negative \(\psi \) such that \(A^{-1}_\psi \) is compact on \(\ell_2(G) = L_2(LG). \)

\(\blacklozenge \) Lemma: \(xV - Vx = \delta(x)A^{-1/2} + V[x, A^{1/2}]A^{-1/2}. \)
Riesz transforms

Definition: Recall that \(A(\lambda(g)) = \psi(g)\lambda(g) \) is the generator. The Riesz transform is the partial isometry

\[
V = \delta A^{-1/2} : L_2(L(G)) \to L_2(L_\infty(\Omega) \rtimes G).
\]

Recall \(L_2(LG) = \ell_2(G), \ L_2(L_\infty(\Omega) \rtimes G) = L_2(\Omega) \otimes \ell_2(G) \).

\(\blacklozenge \) Recall that \(G \) has the Haagerup property if there exists conditionally negative \(\psi \) such that \(A_\psi^{-1} \) is compact on \(\ell_2(G) = L_2(LG) \).

\(\blacklozenge \) Lemma: \(xV - Vx = \delta(x)A^{-1/2} + V[x, A^{1/2}]A^{-1/2} \). ‘In particular’, if \(\Gamma(x, x) \) and \([A^{1/2}x] \) are bounded and \(A^{-1/2} \) is compact, then \([V, x] \) is a compact operator.
Riesz transforms

Definition: Recall that $A(\lambda(g)) = \psi(g)\lambda(g)$ is the generator. The Riesz transform is the partial isometry

$$V = \delta A^{-1/2} : L_2(L(G)) \to L_2(L_\infty(\Omega) \rtimes G).$$

Recall $L_2(LG) = \ell_2(G)$, $L_2(L_\infty(\Omega) \rtimes G) = L_2(\Omega) \otimes \ell_2(G)$.

- Recall that G has the Haagerup property if there exists conditionally negative ψ such that A_{ψ}^{-1} is compact on $\ell_2(G) = L_2(LG)$.
- Lemma: $xV - Vx = \delta(x)A^{-1/2} + V[x, A^{1/2}]A^{-1/2}$. ‘In particular’, if $\Gamma(x, x)$ and $[A^{1/2}x]$ are bounded and $A^{-1/2}$ is compact, then $[V, x]$ is a compact operator.
- Popa and Vaes use this argument for bi-exact groups to produce a separation of variables

$$\lambda(g)\ell_2(G)_{\rho(g)} \xrightarrow{V} \lambda(g)\rho(g)L_2(\Omega) \otimes \ell_2(G)_{\rho(g)} \xrightarrow{W} \lambda(g)L_2(\Omega) \otimes \ell_2(G)_{\rho(g)}.$$

Here W is a classical fundamental unitary used in Fell absorption principle.
The argument seems reminiscent of Ozawa use of property AO:

\[
L(G) \otimes_{\min} R(G) \to B(\ell_2(G))/\mathcal{K}(\ell_2(G)) \\
\cap \\
B(\ell_2(G \times G))
\]
The argument seems reminiscent of Ozawa's use of property AO:

\[L(G) \otimes_{\text{min}} R(G) \to B(\ell_2(G))/\mathcal{K}(\ell_2(G)) \]

\[\cap \]

\[B(\ell_2(G \times G)) \]

\textbf{Thm:} (Popa/Vaes):
The argument seems reminiscent of Ozawa use of property AO:

\[L(G) \otimes_{\text{min}} R(G) \rightarrow B(\ell_2(G))/K(\ell_2(G)) \cap B(\ell_2(G \times G)) \]

\textbf{Thm:} (Popa/Vaes): Every bi-exact, weakly amenable, nonamenable discrete group admits a unique Cartan algebra for crossed products \(N \rtimes G \) with abelian \(N \), up to conjugacy.
The argument seems reminiscent of Ozawa use of property AO:

\[L(G) \otimes_{\min} R(G) \to B(\ell_2(G))/K(\ell_2(G)) \cap B(\ell_2(G \times G)) \]

Thm: (Popa/Vaes): Every bi-exact, weakly amenable, nonamenable discrete group admits a unique Cartan algebra for crossed products \(N \rtimes G \) with abelian \(N \), up to conjugacy.

Their argument combines Ozawa’s insight with the insights of a paper by Chifan and Sinclair.
The argument seems reminiscent of Ozawa use of property AO:

$$L(G) \otimes_{\min} R(G) \rightarrow B(\ell_2(G))/K(\ell_2(G)) \cap B(\ell_2(G \times G))$$

Thm: (Popa/Vaes): Every bi-exact, weakly amenable, nonamenable discrete group admits a unique Cartan algebra for crossed products $N \ltimes G$ with abelian N, up to conjugacy.

Their argument combines Ozawa’s insight with the insights of a paper by Chifan and Sinclair.

Problem Assume that $b : G \rightarrow \mathbb{R}^n$ is finite dimensional, and $A^{-1/2}$ is compact.
The argument seems reminiscent of Ozawa use of property AO:

\[L(G) \otimes_{\text{min}} R(G) \rightarrow B(\ell_2(G))/\mathcal{K}(\ell_2(G)) \cap B(\ell_2(G \times G)) \]

Thm: (Popa/Vaes): Every bi-exact, weakly amenable, nonamenable discrete group admits a unique Cartan algebra for crossed products \(N \rtimes G \) with abelian \(N \), up to conjugacy.

Their argument combines Ozawa’s insight with the insights of a paper by Chifan and Sinclair.

Problem Assume that \(b : G \rightarrow \mathbb{R}^n \) is finite dimensional, and \(A^{-1/2} \) is compact. Then \(D(\lambda(g)\xi) = c(b(g))\lambda(g)\xi \) defines a ‘Dirac’ operator, i.e. \(D \) is selfadjoint and \(D^2 = A \).
The argument seems reminiscent of Ozawa use of property AO:

\[L(G) \otimes_{\text{min}} R(G) \to B(\ell_2(G))/K(\ell_2(G)) \cap B(\ell_2(G \times G)) \]

Thm: (Popa/Vaes): Every bi-exact, weakly amenable, nonamenable discrete group admits a unique Cartan algebra for crossed products \(N \rtimes G \) with abelian \(N \), up to conjugacy.

Their argument combines Ozawa’s insight with the insights of a paper by Chifan and Sinclair.

Problem Assume that \(b : G \to \mathbb{R}^n \) is finite dimensional, and \(A^{-1/2} \) is compact. Then \(D(\lambda(g)\xi) = c(b(g))\lambda(g)\xi \) defines a ‘Dirac’ operator, i. e. \(D \) is selfadjoint and \(D^2 = A \). When does \([D] \in KK(Cl_n \rtimes G; \mathbb{C})\) has an inverse?
Theorem

For discrete groups and semigroups given by Herz-Schur multiplier as above, the Riesz transform is bounded from $L^p(LG) \to L^p(L^\infty(\Omega,\mu) \rtimes G)$ for $1 < p < \infty$.

Main ingredients:

i) Pisier's method, in particular the use of the tangent flow

$\alpha_t(f)(x,y) = f(x+ty,y)$

which is extended to $L^\infty(R^n \times R^n, d\mu \times d\gamma)$.

ii) A clever application of the Hilbert transform, and the Stein-Weiss transference method;

iii) Twisted Khintchine inequalities for $x = \sum h, g a h, g B(h) \lambda(g)$ which satisfy

$\|x\|_p \sim c\sqrt{p}\|E_{LG}(x^*x)\|_2^{1/2} + \|E_{LG}(xx^*)\|_p^{1/2}$.

iv) The constant $c\sqrt{p}$ comes from joint work with Q. Zeng.
Theorem

(J.M.P.) For discrete groups and semigroups given by Herz-Schur multiplier as above, the Riesz transform is bounded from $L_p(LG) \to L_p(L_\infty(\Omega, \mu) \rtimes G)$ for $1 < p < \infty$.

Main ingredients:

i) Pisier's method, in particular the use of the tangent flow $\alpha_t(f)(x, y) = f(x + ty, y)$ which is extended to $L_\infty(\mathbb{R}^n \times \mathbb{R}^n, d\mu \times d\gamma)$.

iii) Twisted Khintchine inequalities for $x = \sum h, g a^h, g B(h) \lambda(g)$ which satisfy $\|x\|_p \sim c \sqrt{p} \|E_{LG}(xx^*)^{1/2}\|_p + \|E_{LG}(x^*x)^{1/2}\|_p$.

iv) The constant $c \sqrt{p}$ comes from joint work with Q. Zeng.
Riesz transforms-analytic aspect

Theorem

(J.M.P.) For discrete groups and semigroups given by Herz-Schur multiplier as above, the Riesz transform is bounded from $L_p(LG) \to L_p(L_\infty(\Omega, \mu) \rtimes G)$ for $1 < p < \infty$.

Main ingredients:

i) Pisier's method, in particular the use of the tangent flow $\alpha_t(f)(x, y) = f(x + ty, y)$ which is extended to $L_\infty(\mathbb{R}^n \times \mathbb{R}^n, d\mu \times d\gamma)$.

ii) A clever application of the Hilbert transform, and the Stein-Weiss transference method;

iii) Twisted Khintchine inequalities for $x = \sum h_a g_a B(h) \lambda(g)$ which satisfy $\|x\|_p \sim c \sqrt{p} \|E_{LG}(xx^*)^{1/2}\|_p + \|E_{LG}(x^*x)^{1/2}\|_p$.

iv) The constant $c \sqrt{p}$ comes from joint work with Q. Zeng.
Riesz transforms-analytic aspect

Theorem

(J.M.P.) For discrete groups and semigroups given by Herz-Schur multiplier as above, the Riesz transform is bounded from $L_p(LG) \to L_p(L_\infty(\Omega, \mu) \rtimes G)$ for $1 < p < \infty$.

Main ingredients:

i) Pisier’s method, in particular the use of the tangent flow

$$\alpha_t(f)(x, y) = f(x + ty, y)$$

which is extended to $L_\infty(\mathbb{R}^n \times \mathbb{R}^n, d\mu \times d\gamma) \rtimes G$.
Riesz transforms-analytic aspect

Theorem

(J.M.P.) For discrete groups and semigroups given by Herz-Schur multiplier as above, the Riesz transform is bounded from $L_p(LG) \to L_p(L_\infty(\Omega, \mu) \rtimes G)$ for $1 < p < \infty$.

Main ingredients:

i) Pisier’s method, in particular the use of the tangent flow

$$\alpha_t(f)(x, y) = f(x + ty, y)$$

which is extended to $L_\infty(\mathbb{R}^n \times \mathbb{R}^n, d\mu \times d\gamma) \rtimes G$.

ii) A clever application of the Hilbert transform, and the Stein-Weiss transference method;
Riesz transforms-analytic aspect

Theorem

(J.M.P.) For discrete groups and semigroups given by Herz-Schur multiplier as above, the Riesz transform is bounded from $L_p(L\mathcal{G}) \rightarrow L_p(L\infty(\Omega, \mu) \rtimes G)$ for $1 < p < \infty$.

Main ingredients:

i) Pisier’s method, in particular the use of the tangent flow

$$\alpha_t(f)(x, y) = f(x + ty, y)$$

which is extended to $L\infty(\mathbb{R}^n \times \mathbb{R}^n, d\mu \times d\gamma) \rtimes G$.

ii) A clever application of the Hilbert transform, and the Stein-Weiss transference method;

iii) Twisted Khintchine inequalities for $x = \sum_{h,g} a_{h,g} B(h) \lambda(g)$ which satisfy

$$\|x\|_p \sim c\sqrt{p} \|E_{\mathcal{G}}(x^*x)^{1/2}\| + \|E_{\mathcal{G}}(xx^*)^{1/2}\|_p.$$
Riesz transforms-analytic aspect

Theorem

(J.M.P.) For discrete groups and semigroups given by Herz-Schur multiplier as above, the Riesz transform is bounded from $L_p(LG) \to L_p(L_\infty(\Omega, \mu) \rtimes G)$ for $1 < p < \infty$.

Main ingredients:

i) Pisier's method, in particular the use of the tangent flow
$$\alpha_t(f)(x, y) = f(x + ty, y)$$
which is extended to $L_\infty(\mathbb{R}^n \times \mathbb{R}^n, d\mu \times d\gamma) \rtimes G$.

ii) A clever application of the Hilbert transform, and the Stein-Weiss transference method;

iii) Twisted Khintchine inequalities for $x = \sum_{h,g} a_{h,g} B(h) \lambda(g)$ which satisfy
$$\|x\|_p \sim c\sqrt{p} \| E_{LG}(x^*x)^{1/2} \| + \| E_{LG}(xx^*)^{1/2} \|_p .$$

iv) The constant $c\sqrt{p}$ comes from joint work with Q. Zeng.
Examples:

Conditionally negative symmetric real functions on \mathbb{R}^n are easy to characterize

$$\psi(\xi) = \int (1 - \cos((\xi, x))d\mu(x)$$

which is well-defined if $\int \min(\|x\|^2, 1)d\mu(x)$ is finite.
Examples:

Conditionally negative symmetric real functions on \mathbb{R}^n are easy to characterize

$$\psi(\xi) = \int (1 - \cos((\xi, x))d\mu(x)$$

which is well-defined if $\int \min(\|x\|^2, 1)d\mu(x)$ is finite. Such formulas are well-known by the Lévy-Khintchine formula.
Examples:

Conditionally negative symmetric real functions on \mathbb{R}^n are easy to characterize

$$\psi(\xi) = \int (1 - \cos((\xi, x)))d\mu(x)$$

which is well-defined if $\int \min(\|x\|^2, 1)d\mu(x)$ is finite. Such formulas are well-known by the Lévy-Khintchine formula.

Cocycle Hilbert space?
We have an explicit candidate for $H = L_2(\mu; \ell_2^2)$ and

$$b(\xi)(x) = \frac{1}{\sqrt{2}}(\pi_x(\xi)(e_1) - e_1) = \left(\begin{array}{c} \frac{\cos(\xi x) - 1}{\sqrt{2}} \\ \sin(\xi x) \end{array} \right).$$

The action is given by

$$\pi_x(\xi) = \left(\begin{array}{cc} \cos(\xi x) & -\sin(\xi x) \\ \sin(\xi x) & \cos(\xi x) \end{array} \right).$$
Multipliers

A multiplier is given by
\[T_m(\lambda(g)) = m(g)\lambda(g). \]

For amenable groups \(T_m : L(G) \to L(G) \) is bounded if \(\hat{m} = \sum_g m(g)\lambda(g) \) is in \(L^1(L(G)) \).

Non-amenable groups (such as free groups) have a richer structure of completely bounded multipliers coming from representation theory.

In classical analysis embedding theorems of Besov spaces \(B^{\alpha,1} \subset L^p \) produce easy examples of multipliers.
A multiplier is given by \(T_m(\lambda(g)) = m(g)\lambda(g) \).
A multiplier is given by $T_m(\lambda(g)) = m(g)\lambda(g)$.

For amenable groups $T_m : L(G) \to L(G)$ is bounded if $
\hat{m} = \sum_g m(g)\lambda(g)$ is in $L_1(L(G))^{**}$.

Non-amenable groups (such as free groups) have a richer structure of completely bounded multipliers coming from representation theory.

In classical analysis embedding theorems of Besov spaces $B_{\alpha,1} \subset L^p$ produce easy examples of multipliers.
A multiplier is given by \(T_m(\lambda(g)) = m(g)\lambda(g) \).

For amenable groups \(T_m : L(G) \to L(G) \) is bounded if
\[
\hat{m} = \sum_g m(g)\lambda(g)
\]
is in \(L_1(L(G))^{**} \).

Non-amenable groups (such as free groups) have a richer structure of completely bounded multipliers coming from representation theory.
A multiplier is given by $T_m(\lambda(g)) = m(g)\lambda(g)$.

For amenable groups $T_m : L(G) \rightarrow L(G)$ is bounded if $\hat{m} = \sum_g m(g)\lambda(g)$ is in $L_1(L(G))^{**}$.

Non-amenable groups (such as free groups) have a richer structure of completely bounded multipliers coming from representation theory.

In classical analysis embedding theorems of Besov spaces $B_{\alpha,1} \subset L_1$ produce easy examples of multipliers.
Patch work multipliers

Bump function:

\[\psi_d(z) = 4 \left(\delta^d z \right) \]

s.t. \[\sum_{d \in \mathbb{Z}} \psi_d(z) = 1 \]

\[m = \sum_{d} \psi_d m_d \]

\[m_1, m_2, m_3, m_4 \]
Remark: Just assuming $m_j = \hat{f}_j$, $\sup_j \|f_j\|_1$ not enough. But maybe for norms $\|f_j\|_1 \leq \|f\|$?
Remark: Just assuming $m_j = \hat{f}_j$, $\sup_j \|f_j\|_1$ not enough. But maybe for norms $\|f_j\|_1 \leq \|f_j\|$?

For a weight $w : \mathbb{R}^n \to [0, \infty)$, we define the Sobolev norm $\|f\|_{L^w_2} = (\int |\hat{f}(x)|^2 w(x) dx)^{1/2}$.
Remark: Just assuming $m_j = \hat{f}_j$, $\sup_j \|f_j\|_1$ not enough. But maybe for norms $\|f_j\|_1 \leq \|f_j\|$?

For a weight $w : \mathbb{R}^n \to [0, \infty)$, we define the Sobolev norm $\|f\|_{L^w_2} = (\int |\hat{f}(x)|^2 w(x) dx)^{1/2}$.

Prop: Let $\varphi(\xi) = \int (1 - \cos(\xi x)) \frac{dx}{w(x)}$.

Remark: Just assuming $m_j = \hat{f}_j$, sup$_j \| f_j \|_1$ not enough. But maybe for norms $\| f_j \|_1 \leq \| f_j \|$?

For a weight $w : \mathbb{R}^n \rightarrow [0, \infty)$, we define the Sobolev norm $\| f \|_{L^w_2} = (\int |\hat{f}(x)|^2 w(x) dx)^{1/2}$.

Prop: Let $\varphi(\xi) = \int (1 - \cos(\xi x)) \frac{dx}{w(x)}$.
Let sup$_j \| g_j \|_{L^w_2} < \infty$. Then $m = \frac{1}{\sqrt{\varphi(\xi)}} \sum_j 1_l m g_j$ extends to a bounded linear map on $L_p(\mathbb{R}^n)$ for $1 < p < \infty$.

Remark: Just assuming \(m_j = \hat{f}_j, \) sup \(j \| f_j \|_1 \) not enough. But maybe for norms \(\| f_j \|_1 \leq ||| f_j || |? \)

For a weight \(w : \mathbb{R}^n \to [0, \infty) \), we define the Sobolev norm \(\| f \|_{L^w_2} = (\int |\hat{f}(x)|^2 w(x) dx)^{1/2} \).

Prop: Let \(\varphi(\xi) = \int (1 - \cos(\xi x)) \frac{dx}{w(x)} \).

Let sup \(j \| g_j \|_{L^w_2} < \infty \). Then \(m = \frac{1}{\sqrt{\varphi(\xi)}} \sum_j 1_j m g_j \) extends to a bounded linear map on \(L^p(\mathbb{R}^n) \) for \(1 < p < \infty \). If in addition \(\int dx/w(x) < \infty \), then

\[
\sup_j \| g_j \|_{L^w_2} < \infty
\]

is enough for patching multipliers.
Remark: Just assuming \(m_j = \hat{f}_j \), \(\sup_j \| f_j \|_1 \) not enough. But maybe for norms \(\| f_j \|_1 \leq \| f_j \| \)?

For a weight \(w : \mathbb{R}^n \rightarrow [0, \infty) \), we define the Sobolev norm
\[
\| f \|_{L^w_2} = \left(\int |\hat{f}(x)|^2 w(x) dx \right)^{1/2}.
\]

Prop: Let \(\varphi(\xi) = \int (1 - \cos(\xi x)) \frac{dx}{w(x)} \).
Let \(\sup_j \| g_j \|_{L^w_2} < \infty \). Then \(m = \frac{1}{\sqrt{\varphi(\xi)}} \sum_j 1_j m g_j \) extends to a bounded linear map on \(L^p(\mathbb{R}^n) \) for \(1 < p < \infty \). If in addition \(\int dx/w(x) < \infty \), then
\[
\sup_j \| g_j \|_{L^w_2} < \infty
\]
is enough for patching multipliers.

Idea: Let \(G(x) = (0, g_j(x)) \). Then \(G \in H_\varphi \) and hence
\[
\langle G, V(\lambda(\xi)) \rangle = m(\xi)
\]
is an \(L_p \) multiplier.
Remark: Just assuming $m_j = \hat{f}_j$, $\sup_j \|f_j\|_1$ not enough. But maybe for norms $\|f_j\|_1 \leq \|\hat{f}_j\|$?

For a weight $w : \mathbb{R}^n \to [0, \infty)$, we define the Sobolev norm $\|f\|_{L^w_2} = (\int |\hat{f}(x)|^2 w(x) dx)^{1/2}$.

Prop: Let $\varphi(\xi) = \int (1 - \cos(\xi x)) \frac{dx}{w(x)}$.

Let $\sup_j \|g_j\|_{L^w_2} < \infty$. Then $m = \frac{1}{\sqrt{\varphi(\xi)}} \sum_j 1_j m_{g_j}$ extends to a bounded linear map on $L_p(\mathbb{R}^n)$ for $1 < p < \infty$. If in addition $\int dx/w(x) < \infty$, then

$$\sup_j \|g_j\|_{L^w_2} < \infty$$

is enough for patching multipliers.

Idea: Let $G(x) = (0, g_j(x))$. Then $G \in H_\varphi$ and hence

$$\langle G, V(\lambda(\xi)) \rangle = m(\xi)$$

is an L_p multiplier. The gluing part is a typical application of Littlewood-Paley theory in combination with noncommutative Khintchine inequalities.
Let ψ be a smooth bump function such that $\sum_j \psi(2^j \xi) = 1$.
Let ψ be a smooth bump function such that $\sum_j \psi(2^j \xi) = 1$. Let $F_j(\xi) = \psi(\xi)m(2^j \xi)$ and $\psi^j(\xi) = \psi(2^{-j} \xi)$.
Let ψ be a smooth bump function such that $\sum_j \psi(2^j \xi) = 1$. Let $F_j(\xi) = \psi(\xi) m(2^j \xi)$ and $\psi^j(\xi) = \psi(2^{-j} \xi)$. Assume that for $j \leq 0$ the Besov norm

$$
\sum_{k \leq j} 2^j \| \hat{\psi}_k * F_j \|_2^2 + \sum_{k \geq j} (1 + 2^k (k - j)^2) \| \hat{\psi}_k * F_j \|_2 < C
$$

Then T_m is bounded on $L^p(\mathbb{R})$ for all $1 < p < \infty$, but in general not on L^∞.
Let ψ be a smooth bump function such that $\sum_j \psi(2^j \xi) = 1$. Let $F_j(\xi) = \psi(\xi)m(2^j \xi)$ and $\psi^j(\xi) = \psi(2^{-j} \xi)$. Assume that for $j \leq 0$ the Besov norm

$$\sum_{k \leq j} 2^j \| \hat{\psi}_k \ast F_j \|_2^2 + \sum_{k \geq j} (1 + 2^k(k - j)^2) \| \hat{\psi}_k \ast F_j \|_2 < C$$

and that $j > 0$

$$\sum_k (1 + 2^k j(k - j)^2_+) \| \hat{\psi}_k \ast F_j \|_2^2 < C$$

Then T_m is bounded on $L_p(\mathbb{R})$ for all $1 < p < \infty$, but in general not on L_∞.
Some ‘harder multiplier results’ can be deduced from a clever application of cocycles, Pisier’s method, and ultimately, a transferred version of the Hilbert transform $m(\xi) = \text{sgn}(\xi)$ (with leads to the ‘only’ singular kernel).
Some ‘harder multiplier results’ can be deduced from a clever application of cocycles, Pisier’s method, and ultimately, a transferred version of the Hilbert transform \(m(\xi) = \text{sgn}(\xi) \) (with leads to the ‘only’ singular kernel).

Thanks for listening