1. Completion

FACT 1.1. 1) Let \((X,d)\) be a complete metric space. Then every closed subset is complete.

2) Let \(A \subset (X,d)\) be a set. The closure
\[\tilde{A} = \bigcap_{C \subset \mathbb{C}} C \]
is a closed set and \(A\) is dense in \(\tilde{A}\). i.e for every \(y \in \tilde{A}\), \(\varepsilon > 0\) there exists \(x \in A\) such that
\[d(x, y) < \varepsilon. \]

LEMMA 1.2. Let \(X\) be a non-empty metric space. For \(x \in X\), we define the function \(d_x : X \to \mathbb{R}\) by
\[d_x(y) = d(y, x). \]

Then
i) \(d_x\) is continuous.

ii) \(d_\infty(d_x, d_z) = d(x, z)\) holds for
\[d_\infty(f, g) = \sup_{y \in X} |f(y) - g(y)|. \]

PROOF. Part i) is a homework. For part ii) we note that
\[|d_x(y) - d_z(y)| = |d(x, y) - d(z, y)| \leq d(x, z) \]
Indeed, we have
\[d(x, y) \leq d(x, z) + d(z, y) \]
and
\[d(z, y) \leq d(z, y) + d(y, x) \]
This implies
\[d_\infty(d_x, d_z) \leq d(x, z) \]
Moreover, taking \(y = z\)
\[d_\infty(d_x, d_z) \geq |d_x(z) - d_z(z)| = d(x, z). \]

We have shown ii).

THEOREM 1.3. The uniform limit of continuous functions is continuous.

PROOF. See notes or text book.
In the next corollary we may think of \(h \) to be a profile.

Corollary 1.4. Let \(h \in C(X, Y) \) a fixed function and
\[
Z_h = \{ f : X \to Y | f \text{ continuous }, d_\infty(f, h) < \infty \}.
\]
Assume that \(Y \) is complete. Then \(Z_h \) is complete.

Proof. Let \(f_n \) by Cauchy in \(Z_h \). For every \(\varepsilon > 0 \) there exists a \(n_0 \) such that
\[
d(f_n(x), f_m(x)) < \varepsilon/2
\]
holds for all \(x \) and \(n, m \geq 0 \). In particular \((f_n(x)) \) is Cauchy in \(Y \), and hence
\[
f(x) = \lim_n f_n(x)
\]
makes sense. By continuity, we have
\[
d(f_n(x), f(x)) < \varepsilon/2 < \varepsilon
\]
for all \(n \geq n_0 \) and \(x \). This means
\[
d_\infty(f_n, f) < \varepsilon
\]
for all \(n > n_0(\varepsilon) \). Therefore \(f_n \) is a uniform limit of continuous functions and hence continuous. Moreover, (1.2) shows that
\[
\lim_{n \to \infty} d_\infty(f_n, f) = 0.
\]
Therefore \(f \) is indeed, the correct limit. Finally, by choosing \(\varepsilon = 1 \) we find
\[
d_\infty(f, h) \leq d_\infty(f, f_{n_0(1)+1}) + d_\infty(f_{n_0(1)+1}, h) < \infty.
\]
This means our limit is indeed in \(Z_h \).

Theorem 1.5. Let \(\emptyset \neq X \) be a metric space. Then \(X \) gas a completion, i.e. there exists a metric space \(Y \) and a map \(\phi : X \to Y \) such that
\begin{enumerate}

 i) \(d(\phi(x), \phi(y)) = d(x, y) \);

 ii) \(Y \) is complete;

 iii) \(\phi(X) \) is dense in \(Y \).
\end{enumerate}

Proof. Let \(x_0 \in X \) and \(h = d_{x_0} \) our profile in \(C(X, \mathbb{R}) \). We define
\[
\phi(x) = d_x
\]
assigning every point its distance function. Then \(Z_h \) is complete. Moreover,
\[
d_\infty(d_x, d_{x_0}) \leq d(x, x_0)
\]
1. COMPLETION

shows that $\phi(X) \subset Z_h$. Then the closure $Y = \overline{\phi(X)}$ is complete and $\phi(x) = d_x$ has all the desired properties.