Fubini and Cavalieri

Definition 0.1 Let \(f : \mathbb{R}^n \to \mathbb{R} \), we say that \(f \) has bounded support if there exists \(R > 0 \) such that
\[
f(x) = 0
\]
for all \(|x| \geq R \).

Theorem 0.2 (Fubini) Let \(1 \leq k \leq n \) and \(f : \mathbb{R}^n \to \mathbb{R} \) be an integrable function (with bounded support). Then
\[
\int_{\mathbb{R}^n} F(x_1, \ldots, x_n) dV_n(x_1, \ldots, x_n)
= \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^{n-k}} F(x_1, \ldots, x_k, x_{k+1}, \ldots, x_n) dV_{n-k}(x_{k+1}, \ldots, x_n) \right) dV_k(x_1, \ldots, x_k).
\]
Moreover, the integrals inside makes sense.

Theorem 0.3 (Cavalieri, Fubini-Tonnelli). Let \(1 \leq k \leq n \) and \(F : \mathbb{R}^n \to f \) be a positive function such that

1. For fixed (frozen) \((x_1, \ldots, x_k)\) the function which sends \((x_{k+1}, \ldots, x_n)\) to the value \(F(x_1, \ldots, x_k, x_{k+1}, \ldots, x_n) \) is integrable;

2. For fixed (frozen) \((x_1, \ldots, x_k)\) the function which sends \((x_{k+1}, \ldots, x_n)\) to
\[
\int_{\mathbb{R}^{n-k}} F(x_1, \ldots, x_k, x_{k+1}, \ldots, x_n) dV_{n-k}(x_{k+1}, \ldots, x_n)
\]
is integrable.

Then \(F \) is integrable and
\[
\int F(x_1, \ldots, x_n) dV_n(x_1, \ldots, x_n)
= \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^{n-k}} F(x_1, \ldots, x_k, x_{k+1}, \ldots, x_n) dV_{n-k}(x_{k+1}, \ldots, x_n) \right) dV_k(x_1, \ldots, x_k).
\]

Remark 0.4 You will usually apply this by checking that the “frozen” functions are continuous (or have only only finitely many discontinuities) in 1. and 2.