THE TOPOLOGY AND ANALYSIS
OF THE HANNA NEUMANN CONJECTURE

IGOR MINEYEV

ABSTRACT. The statement of the Hanna Neumann Conjecture (HNC) is purely algebraic: for
a free group I' and any nontrivial finitely generated subgroups A and B of T,

tk(ANB)—-1<(kA—-1)(tkB —1).

The goal of this paper is to systematically develop machinery that would allow for general-
izations of HNC and to exhibit their relations with topology and analysis. On the topological
side we define immersions of complexes, leafages, systems of complexes, flowers, gardens, and
atomic decompositions of graphs and surfaces. The analytic part involves working with the
classical Murray-von Neumann (!) dimension of Hilbert modules.

This also gives an approach to the Strengthened Hanna Neumann Conjecture (SHNC) and
to its generalizations. We present three faces of it named, respectively, the square approach, the
diagonal approach, and the arrangement approach. Each of the three comes from the notion of
a system, and each leads to questions beyond graphs and free groups. Partial results, sufficient
conditions, and generalizations of the statement of SHNC are presented.
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Although the summer sunlight gild
Cloudy leafage of the sky,

Or wintry moonlight sink the field
In storm-scattered intricacy,

I cannot look thereon,
Responsibility so weighs me down.

William Butler Yeats, “Vacillation”.

1. INTRODUCTION

Hanna Neumann formulated her conjecture in [17] and [18]. The easiest way to state it is
using the notion of reduced rank defined by Walter Neumann [19, p. 162] and named so by
Dicks [3, p. 373]. The reduced rank of a free group T is the number

(1) 7(I') := max {0,k — 1}.

Conjecture 1 (HNC). Suppose T is a free group and A and B are its finitely generated sub-
groups. Then

T(ANB) <7(A)-7(B).

This conjecture, if true, would be the sharp version of the result of Howson [8] asserting that
rk (AN B) is finite. Walter Neumann [19, p.164] further proposed the following Strengthened
Hanna Neumann Conjecture. Let A\I'/B be the set of all double cosets AgB for g € ' and
s: A\I'/B — T be a section of the quotient map I' — A\I'/B. Denote A% := z7'Az.

Conjecture 2 (SHNC). Suppose I' is a free group and A and B are its finitely generated
subgroups. Then

(2) > #(A*NB) < F(A)-7(B).

z€s(A\I'/B)

A series of partial results have appeared since. For further details the reader is referred to
Burns [2], Imrich [9], Servatius [23], Stallings [24], Gersten [7], Nickolas [20], Walter Neu-
mann [19], Feuerman [6], Tardos [25], Dicks [3], Dicks-Formanek [4], Khan [13], Meakin-
Weil [16], Sergei Ivanov [10, 11}, Dicks-Ivanov [5].

There is no loss of generality in assuming in either conjecture that I' is the free group of
rank 2, since the group generated by A and B can be embedded in F; (see [19]). The relation
of HNC to a study of pull-backs of finite graphs goes back to the work of Stallings [24]; he
showed that the subgroups A and B can be represented by immersions of finite graphs, and
that AN B is realized by a component of their fiber-product. It was first observed by Warren
Dicks that HNC can be restated in terms of the first £2-Betti numbers of A, B, and AN B.

Our goal is to set a foundation for HNC-like questions, generalizing the conjecture to com-
plexes and arbitrary groups. Below is an outline of notions and results of the paper.

e Let I' be an arbitrary group, X be a free [-complex, X := F\X, and A, B <T. In 3.1
we define a system of complexes and maps that arise from these data.
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e The case when I' is free can be realized by a system of graphs which incorporates
Stallings’ immersions (see 3.6 and 3.7). We show that in this case the reduced ranks of
I, A, B equals the first 2-Betti numbers of I'-graphs in a corresponding graph system
(5.4 and 8.3), so the inequality of SHNC can be equivalently rewritten in terms of ¢*-
Betti numbers for that system. Then we work with Hilbert modules arising from such
graphs systems.

e In particular, systems allow generalizing the statements of HNC and SHNC to sur-
faces: those are inequalities involving £2-Betti numbers for finitely generated subgroups
of m(X), where X is a compact surface (with boundary or not) with x(X) = —1
(section 8). This surface case turns out to be very similar to the case of graphs.

e Flowers and gardens in 5.1 are combinatorial notions parallel to trees and forests. They
serve the same purpose for reduced rank as trees and forests do for the usual rank of
free groups. Flowers and gardens describe £2-Betti numbers just as trees and forests
describe the usual Betti numbers of graphs.

o Atomic decompositions of graphs are defined in 5.5 and are used in 10.10 to obtain
certain bases in Hilbert modules and atomic square maps. In a completely analogous
fashion we describe atomic decompositions of surfaces in 8.4. Atoms naturally provide
subspaces of dimension 1 (theorems 16 and 26).

e Tardos [25] proved SHNC in the case when one of the subgroups is of rank 2. We
give alternative analytic proofs of this result and generalize it to surfaces (Corollary 35,
Theorem 66). An analogous result can be proved for complexes when I' is any group
satisfying the Atiyah conjecture.

e In 10.9 we define two classes of groups P C Py, in terms of bases in £2(I' x I'), and ask,
what groups they contain. Groups in these classes (at least those that satisfy the Atiyah
conjecture) can be shown to satisfy SHNC-like inequalities. If F; belongs to Py, then
SHNC holds.

e It is well known that the equality holds in the statement of SHNC if one of the groups is
of finite index (see [19]). We give alternative proofs of this and of its analog for surfaces
(lemmas 71 and 72).

e We prove SHNC in the case when one of the graphs is “one edge less that a cover”
(subsection 12.4); this can be viewed as dual to Tardos’ result.

e In 11.5 we establish a kind of duality that allows equivalently restating the inequality
in SHNC as an inequality for orthogonal complements.

e Sufficient conditions for SHNC are given in theorems 32, 51, 52, 56, 65, 67, and lem-
mas H8 and 74.

e In section 12 we discuss a notion of “finite-dimensional” ergodicity for subspaces that
naturally arises from the arrangement approach and seems to be relevant for SHNC.

e In section 13 we investigate multiplicativity, that is when an equality, rather than an
inequality, holds in the statement of SHNC.

e Section 14 poses some questions.



4 IGOR MINEYEV

The following are the three faces of our approach to SHNC and to its generalizations. They
all arise from the notion of a system, and all three lead to questions beyond graphs and free
groups.

(1) Let the three graphs (S,Y,Z) be part of the graph system introduced in 3.6; they
correspond to the three terms of inequality (2). The square approach (section 10) studies
certain G x G-equivariant maps H{m(é’) — H1(2) (V) ®H1(2)(Z), where G is a subgroup
of finite index in I'. This can also be restated in terms of some particular G x G-maps
?(T'xT) — (3T xT), that are obtained by “gliding the identity map along diagonals”.
All such maps are generically called square maps. The existence of an injective square
map would imply SHNC. More generally, having a sequence G; < I' and a sequence of
square maps that “become more and more injective” would suffice. (See remark in 10.8.)
Specific examples of square maps are obtained from systems (see 10.3, 10.5, 10.10) and
we ask whether any of them are injective.

(2) The diagonal approach (section 9) uses only “the diagonal part” of the above tensor
product. We give sufficient conditions for SHNC in terms of existence of certain I'-
invariant bases.

(3) The arrangement approach of section 11 is a restatement of the diagonal approach in
terms of finite indexed families of Hilbert G-submodules in ¢2(T'), called arrangements,
where GG is a certain normal subgroup of finite index in I'.  SHNC is restated as a
question about such arrangements. As a test case, one can ask the same question about
arrangements of subspaces in a finite dimensional vector space that are invariant under
some finite group.

The author would like to thank Victor Gerasimov, Stephen Gersten, Peter Linnell, Wolf-
gang Liick, Walter Neumann, Roman Sauer, Guoliang Yu for helpful conversations on related
subjects. This research is partially supported by the NSF grant DMS 07-06876.

2. GROUPS AND COMPLEXES.

2.1. Cell complexes. For concrete applications to the Hanna Neumann conjecture we primar-
ily will be interested in graphs and free groups, but it seems important to discuss cell complexes
and more general groups since one of our objectives will be to explore generalizations of the
conjecture. Even considering free groups, representing them as fundamental groups of surfaces
or complexes conceivably might be beneficial.

We will work in the category of CW complexes, which will be called cell complexes. Let ;(X)
denote the set of all closed i-cells in X and X(X) := | |, 2:(X). The cells in a cell complex
are assumed to be given fixed orientations. In the combinatorial language, each complex X is
viewed as the set (X ). All maps of cell complexes and group actions are required to preserve
cell structure and the orientations of cells.

Comp(Y') will denote the set of connected components of Y.
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The pull-back diagram
(3)

S——7
ul B

y 2> X
of cell maps « and f is defined as follows. The fiber product S of Y and Z is the set
YxxZ:={(y,2) €Y x Z|aly) = B(2)}

and p and v are projections to each coordinate.

2.2. Combinatorial maps. A map a : Y — X between cell complexes will be called combi-
natorial if it maps each open cell in X homeomorphically onto an open cell in Y. If a: Y — X
and (8 : Z — X are combinatorial maps, then Y X x Z has a natural induced structure of cell
complex such that X(Y xx Z) can be identified with X(Y) xxx) X(Z). In other words, the
topological and combinatorial pull-back operations agree, so we can use them interchangeably.

2.3. Immersions.

Definition 1. A continuous map f : Y — X between two cell complexes will be called an
immersion if there exists a cover ' :Y' — X, with cellular structure on Y’ induced from X,
such that'Y is a subcomplex of Y' and f' is an extension of f.

This generalizes immersions of graphs considered by Stallings [24]. Any immersion of finite
graphs Y — X in the sense of [24] (restated for the category of 1-dimensional cell complexes
rather than for Serre graphs) is an immersion in the sense of the above definition.

Each cover is obviously an immersion, and all immersions are combinatorial.

2.4. Cloudy leafage of the sky. A leafage will be a combinatorial map A : Y — X between
cell complexes whose restriction to each connected component of Y is injective. For brevity we
will say in this case that “Yis a leafage over X” or that “\ is a leafage over X”. A cover
leafage is a leafage A : Y — X that sends each connected component of X (1somorphlcally)
onto a connected component of Y.AT- leafage is a leafage \ : Y — X such that X and Y are
given cellular I'-actions and A is '-eqivariant.

The following lemma is immediate.

Lemma 2. Suppose

S
|l
Yy %=X

15 any pull-back diagram of cell complezes.

(a) If « is an immersion and [ is a cover, then i is a cover.

(b) If o« and B are cover, then u, v, and oo p are covers.

(¢) If a and B are immersions, then u, v, and oo p are immersions.
(d) If « is a leafage, then v is a leafage.
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3. SYSTEMS.

3.1. Systems of complexes. We define a formal structure consisting of cell complexes and
maps. It can be viewed as a category if needed.

Start with a group I' and a cell complex X with a free cellular T-action. For simplicity, in
this paper we will always additionally assume that X is connected. This assumption is really
a technical one and can be removed. Let X := F\X, px : X = X be the quotient map, and
a:Y — X and §: Z — X be immersions.

Notation. In what follows, for fixed complexes X and X,

e YOZ will denote the fiber product Y X x Z, and
e YO Z will denote the fiber product Y X 4.

~

Define complexes Y, Z, S and the maps py, pz, ps, &, B, i, ¥ by pulling back diagram (3)
by px:

(4) S _ Z
S v Z
w
B8
i A
B8
Y e X
PxX
N\ N
Y @ X

Each square in (4) is a pull-back diagram. In particular, we can identify $ = YO Z. Define
S by the pullback diagram

I

=
<~ U»
> E— Ny

~
|
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Then S =YOZ CYDZ = S. We let 7: § — S denote the inclusion map. The above square
can be incorporated into (4) giving

(5) S

Diagrams (4) and (5) determine each other. Either one of them, together with the I'-action
on X, will be called the system generated by (X,Y,Z, X, «, 5,px) and denoted

S = S(X7Y7 ZJX7a7ﬁ7pX)‘

Definition 3. A system, or a I'-system, is the system generated by some (X,Y, Z, X, a, B,px)
as above. A system S will be called connected if X, Y and Z are connected.

3.2. A more detailed description of a system. Each commutative diagram can be viewed
as a category whose objects are the entries and morphisms are the arrows together with the
added identity arrows at each entry.

Consider the special case of system (4) in which av: Y — X and g : Z — X are both taken
to be the identity map ¢d : X — X. This defines the system

(6) X X
Xa X
X X
px
k \
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in which gll theA squares are pull-back diagrams. Clearly, Xa is isomorphic to X and we can
identify XA = X0 X. X
Let px : X — X be as above. Define X and ¢x by the pull-back diagram

><>>
B
s

Px

=}
<
y <—

>t
[:s
<

B ——

(7)

/
X pPx
ax
X = X
pPx
k / \
X X
which is a special case of (5).
Extend the identity functor
8) X X X X
id
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to the functor

in the obvious way, by mapping each entry on the left to the corresponding corner of the square
on the right by an appropriate map: idx, px, px,, and pxUOpx.

Now one can check that diagram (5) is the pull-back diagram of the functors € and &, where
0 is defined in the obvious way by maps into X.
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(10) s ; Z
u B
Y @ X
[}
d
X X X
\Y(
| 1
X pPx
ax
X — X X X
pPx
Z& / \
X X

This pull-back defines each entry and each arrow in the system (5) which is the left upper
corner of (10).

3.3. Group actions in the system. The ['-action on X induces -actions on Y and Z. The
I'-actions on X and Y induce a coordinate-wise I' x I'-action on S

A

(g,h) - (0,7):= (go,hr) for g,heTl, (1,0) € X(S) = E(}A/DZ)
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A similar formula defines a I' x ['-action on X.
Let A be the diagonal subgroup in I' x T".

Lemma 4.

(a) Stabpxp(A )
(b) Stabpxp(S) =

Proof. (a)

A

S(Xa) = S(XOX) ={(0,0) € S(X) x 2(X) |0 € (X))} C £(X),

s0 Xa is the same as the image of the diagonal inclusion diag : X XxX, 00 (0,0). This
implies A C Stabpyr(Xa). Conversely, take any (g, h) € StCLbFXF(XA) and any (o, 0) € 2(Xa),
then (ga ho) € $(Xa), so go = ho. Since the M-action on X is free, g = hand (g,h) € A.

(b) S is the full preimage (= pull-back) of Xa under the I'x T-map S — X from diagram (10),
hence Stabpxr(S) = StCLbFX[‘(XA) = A. O

Therefore each term in the system S naturally comes with a group action:

e lactson X, Y, and Z,
oFactsonX Y andZ
oFxFactsonS

e A acts on S.

S can be given a ['-action by the diagonal isomorphism I' — A. For the purpose of nota-
tion we will not distinguish between the I'-action and the A-action on S, and will use them
interchangeably.

Lemma 5. The maps px, py, pz, and ps are the quotient maps by the I'-actions. The map
pyOpyz s the quotient map by the I' X I'-action. This gives the isomorphisms

X=N\X, VYoI\W, 2zZ2I\Z,  S=I\S, ST xD\S.

Proof. px is the quotient map meaning that the preimage of each cell in X under the map
X = Xis a I'-orbit. This property lifts to the maps Y =Y, Z— Z,8— 8. The I x [-orbits
of cells in S are exactly the Cartesian products of P-orbits in ¥ and Z mapping to the same
cell in X, and those are exactly the preimages in S of cells in X. 0

3.4. Subsystems and pairs. Let S be any system. A subsystem of a system S has the obvious
meaning: it is a system 7 whose term s are subcomplexes of the corresponding terms in S and
whose maps are restrictions of the corresponding maps in §. We also require that I' is the
same for both systems and all the above group actions on the terms of S restrict to the actions
by the same groups on the corresponding terms of 7. If 7 is a subsystem of S, we will write
T C S and say that (S,7T) is a pair of systems.

Since we assume that a and S in a system S are immersions, we can always embed S as
a subsystem of another system S’ as follows. Let o : Y/ — X and § : Z/ — X be covers
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extending the above a and . Let &' be the system generated by o : V' — X, 8: 2 — X,
px : X — X, that is, &’ is the diagram

(11)

S

Then § C §’'. The following is an immediate corollary of Lemma 2.

Lemma 6. For any pair of systems (S',S) as above, the following hold.

e [n the system S', all the maps other than t are covers.
e In the system S, all the maps are immersions. Furthermore, px, py, Pz, Ps, pyOpz
are covers.

3.5. Properties of systems. We assume that Xina system is connected.

Theorem 7. Let S = S(X,Y, Z,X,oz,ﬂ,px) be a I'-system of complezxes as in (5).
(a) X is simply connected iff it is the universal cover of X.

Now additionally assume that X is simply connected.
(b) I' can be identified with m (X).
(c) &: Y = X and 8: Z — X are leafages.
Now additionally assume that'Y and Z are connected.
(d) If a 1 Y — X is mi-injective, or equivalently, the inclusion of Y into the cover Y’ is

m-injective, then each component K on is a copy of the universal cover of Y and the
restriction of py to K, py K — 'Y, is the universal cover map. The same holds for

(Z,Z,pz) in place of (Y,Y ,py).

(e) The induced I'-actions on Comp(f/) and on Comp(Z) are transitive.

(f) For each K € Comp( Y) its stabilizer Stabr(K) is a conjugate of o (m(Y)) in I'. The
same holds for (Z,Z,8) in place of (Y,Y, ).

(g) If a:Y — X is a cover, then & : Y — X is a cover leafage. The same for B

Of course, all the above also applies to the system &’ as in (11).

Proof. Consider a system of complexes §. We will view system S as embedded into a system
S asin (11).
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(a) and (b) are standard facts from covering theory.

(c) Suppose a and b lie in the same component K of Y and @(a) = @(b), then there is a path p
in K from a to b and & o p is a loop in X. Since X is simply connected, & o p is nullhomotoplc
in X. Since & : YY" — X is a cover, this nullhomotopy lifts to a nullhomotopy of p in ¥’ (not
necessarily in Y). Then p is a loop, so a = b.

(d) The equivalence of mi-injectivity of a : Y — X and of Y — Y’ follows from m-injectivity
of a:Y' — X.

By Lemma 6, py : Y — Y is a cover. Since cell complexes are locally path connected, the
restricted map py : K — Y is a cover. It remains to show that K is simply connected. Take
any loop ¢ at any basepoint g, € K. Since X is simply connected, the loop p := & o ¢ is null-
homotopic in X, hence the loop p := px op = px o&oq is null-homotopic in X. Let q := py o,
aloop in Y. Then oo g = p. Since o : Y — X is my-injective, there is a null-homotopy h; of ¢
inY,te [O 1]. Then f; :== o hy is a null- homotopy of p in X, which lifts to a null- homotopy
ft of pin X. The point-wise pull-back of h and f denoted hO f is a null-homotopy of ¢ in Y.

Y ¢ X
X w
2% }f = X
K
g, B p, f
q, hljf ................................... 137]?

(e) Take any K, L € Comp(Y) and any vertex z in K. Since Y is (path) connected, then the
cover py : L — Y is surjective. Then there exists a vertex y € L with py(y) = py(z). By
Lemma 5, x and y lie in the same ['-orbit. Then some element of I' maps x to y, and therefore
K onto L. A
(f) The tacit assumption is that X, X, Y are given some basepoints xq, &g, yo such that
a(yo) = xo, px(To) = xo. Let g € Y = YOX be the pull-back of yo and #o, i.e. o := (Yo, To).
Let K be the component of Y containing go. Let K’ be the component of Y’ containing K.
For g € m(X), the point gy € X is defined by choosing any loop Py - [0, 1] — X represent-
ing g, lifting it to a path p starting at 2o, and taking the other endpoint of p, i.e. gZo := p(1).
This definition of course can be extended to define gz for any z € X.
Take any g € m;(X) and represent it by a loop p, at o in X. Since o : Y’ — X is a cover,

pg lifts to a path p’ in Y starting at yo € Y. Let p be the lift of p, to X. Let p := p'Op, then
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p' is a path in Y starting at o € K, hence p is a path in K’. In particular, p(l) e K.

(Y, y0)— (Y, 10) . (X, o)
o\ (Y 80)—— (Y, 9o) . (X, o)

g € Stabr(K) & gjphe K< p'(l1) e K and gjp € K
Since in the system S’
a(p'(1)) = p(1) = gio = gla(do)] = &(go),
then (c) can be applied to the points p'(1) and ggy and component K’ giving the equivalence

pPl)e K andgjoe K & p(1)=gje K
By (d) applied to the system &', K’ is simply connected. Note also that
py (9%0) = Yo = py (Jo)-
This implies the equivalences
P(1) =g € K
& pis aloop at 1y and
P’ is homotopic in Y’ to a path ¢ in K rel endpoints
& p'isaloop at yo and
p’ is homotopic in Y’ to a loop ¢ in Y rel 1,
< there is a loop ¢ in Y at gy such that
Dy is homotopic to a o g rel zg
& gea(m((Y)).
Combining the above equivalences we obtain Stabr(K) = a.(m(Y)). By (e), each component

of Y is of the form ¢gK for some g € I' and
Stabr(gK) = g[Stabr(K)lg™" = gla.(m(Y))lg ™.
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(g) Suppose K € Comp(Y). By (c), & : K — X is injective. By (d), py : K — Y is the
universal cover, hence the map px o & = aopy : K — X is the universal cover. This implies
that & : K — X is an isomorphism. This finishes the proof of Theorem 7. U

Lemma 8. The induced actions by I' x 1, 1 x I', and I" x I" on Comp(f() are transitive.

Proof. The transitivity of the I' x 1-action follows by the argument of Theorem 7(e), replacing Y

with X and Y with X . The transitivity of 1 x I'-action is similar. This implies the transitivity
of the I' x I'-action. 0

3.6. Graph systems. A graph is a 1-dimensional cell complex. By a graph system we will
mean a system S consisting of graphs. To avoid technicalities, in this paper we will always
additionally assume that in a graph system

e ['is a free group of rank 2,

e X is a finite graph with 7 (X) 2 T, for example X can be the graph with one vertex
and two edges,

e Y and Z are finite, and

e py : X — X is the universal cover map.

3.7. Connected graph systems. Recall that a system is called connected if X, Y and Z are
connected. We show how the assumptions of SHNC give rise to a connected graph system, and
vice versa.

Let I" be the free group of rank 2. Pick any finitely generated subgroups A and B of T,
let @ 1Y — X and ' : Z/ — X be covers with m(Y’) = A and m(Z’) = B. Some
basepoints in X', Y’, Z' are assumed here. Note that this means the graphs Y’ and Z’ are
connected. Since A and B are finitely generated, there are (connected) finite subgraphs Y C Y’,
Z C Z' that are deformation retracts of Y’ and Z’, respectively, and contain the basepoints.
Let « : Y — X and § : Z — X be restrictions of o/ and f’. Then m(Y) = A, m(Z) = B,
and the induced homomorphisms 7 («) : m(Y) < m(X) and m(6) : m(Z) < m(X) are the
subgroup inclusions A C I' and B C I'. This construction is described by Stallings [24] in the
category of Serre graphs; it can be easily adjusted to our topological setting of 1-dimensional
cell complexes.

Consider the connected graph system S generated by the above «, 5 and px as in 3.1. By
Theorem 7(f), the stabilizers of the components of Y are the conjugates of A in I', and the
stabilizers of the components of Z are the conjugates of B in T

It is possible to extend the above o and [ to connected finite covers o : Y° — X and
B : Z° — X. This is shown by adjusting the proof of [24, Theorem 6.1] to our topological
setting. These maps generate the following system S° containing S as a subsystem.
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(12)

S°:

Set A° :=m(Y°) and B° := m(Z°). We will identify A° and B° with subgroups of I". They
are of finite index since Y° and Z° are finite covers of X. By Theorem 7(f), the stabilizers
of the components of Y° are the conjugates of A° in I', and the stabilizers of the components
of Z° are the conjugates of B° in T.

4. GROUPS AND HILBERT MODULES.

4.1. Hilbert I'-modules. We collect standard facts about Hilbert modules; see [15] for a
detailed exposition.

All Hilbert spaces will be over C. A Hilbert I'-module is a Hilbert space V' isometrically
isomorphic to a I-invariant Hilbert subspace of £2(T") ® U, where U is some Hilbert space given
the trivial T-action. This gives a I-action on V' which it turn gives an A/ (T')-module structure
on V, where NV (I') is the von Neumann algebra of I. A morphism of Hilbert T'-modules is a
bounded map that commutes with the left I'-action. A morphism of Hilbert I'-modules is a
weak isomorphism if it is injective and has dense image.

For a set S, £%(S) is the Hilbert space with orthonormal basis S. If S is a free ['-set, the
(left) T-action on ¢%(S) is defined by

(9f)(s):==f(g7's) forgel, fe (), s€S,

giving ¢%(S) the structure of a Hilbert I-module.
Any Hilbert I'-module V' is assigned the Murray-von Neumann dimension by the rule

(13) dimp (V') := ) (prvi(bi®e), b; @ e),

i=1
where V' C (*(T') ® U is any isometric copy of V, U is a Hibert space, e € I' C (*(T) is
the identity element, B C V is an orthonormal basis of the Hilbert space V', and pry is the
orthogonal projection of ¢*(T') ® U onto V.
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The dimension dimr is additive in the following sense: if
0—=-U—=V-=>W=0
is a weakly exact sequence of Hilbert I'-modules, then dimp V' = dimp U + dimp W [15, Theo-
rem 1.12(2)].
Liick defined a notion of dimension for arbitrary (purely algebraic) modules over N/ (T") that
extends the Murray-von Neumann dimension [15, Definition 6.20]. If f: U C V is an N (T')-

submodule of a Hilbert I'-module V', then one can define dimr U by the Liick’s extended
definition. This is equivalent to setting dimr U := dimp U.

4.2. (>-homology and (*>-Betti numbers. Given a free I-complex X, let E,(X) be the set
of i-cells in X and Ci(Q)(X) = 12(24(2)).
The ¢2-homology of X is the reduced homology of the chain complex

. : f O
0(2)(X) i) Ci(g)l(X) T :

2

Oi+2

2o (X)

Oi+1
—

that is H, (2 )(X ) == Ker 0;/Im 0;;,. Here 0; is the completion of the usual boundary map
Cy(X) = Ci_1(X). Note that X is not assumed to be connected.
The ith 2-Betti number of (X,T) is

b (X:T) := dimp H?(X).
Notation. We will write H(X) instead of Hfz) (X).

When X is a graph, H(X ) is the same as the set of 1-dimensional ¢?-cycles, and we will
always view it as a subspace of C£2) (X). Functor H(-) preserves injectivity: if X C X° are
graphs then

H(X) =Ker[0: CP(X) —» ¢P(X)] = Ker[0): (X)) = cP(X°)]

=Ker[0: CP(X°) > cP(X)) ncP(X) CH(X®) C cP(X°).
4.3. Induction. If G is a subgroup of a group I' and X is a complex with a free G-action,
denote

Indg X == | | aX = (T/G) x X,
acl’/G

where aX is a copy of X. Then Indg(X) can be given a I'-set structure. If V is a Hilbert
G-module, denote Indg V the completed orthogonal sum @,cr /qaV , where aV is a copy of V.
Then Indg, (V) can be given a Hilbert T-module structure and it follows that

dimp Indg, V = dimg V
(see [15, Lemma 1.24]).
Lemma 9. For any system S there are I' x I'-isomorphisms
(a) )j( >~ Ind" X and
(b) S = Ind"S.
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Proof. This follows from lemmas 4 and 8. OJ

4.4. Bases. Let B be a set. The action of I' on itself induces a ['-action on I'B which extends to
a Hilbert I'-module structure on ¢*(T" x B) and also to an N (T')-module structure on ¢*(T" x B).
The standard orthonormal T-invariant basis of ¢*(T' x B) is the set T' x B. This is not to be
confused with the standard orthonormal I"-basis which is the set B =1 x B.

If V is a Hilbert I'-module, an orthonormal I'-invariant basis of V is the image of I' x B
under a Hilbert I'-module map ¢*(T" x B) — V that is an isometric isomorphism, for some B.
Similarly, an orthonormal T'-basis of V' is the image of B = 1 x B under such an isometric
isomorphism.

A T-invariant basis of V is the image of I' x B under a Hilbert I'-module map ¢*(I'x B) — V
that is a weak isomorphism, for some B. Similarly, a I'-basis of V' is the image of B =1 x B
under such a weak isomorphism.

A T'-subbasis of a Hilbert I'-module V' is a subset of some I'-basis. An orthonormal I'-subbasis
of V' is a subset of some orthonormal I'-basis.

4.5. Change of Hilbert structure. Suppose f : V' — V' is a Hilbert I'-module map that is
a weak isomorphism. By the change of Hilbert structure on V' by f we mean replacing V' with
V' and f with the identity map V' — V’. Equivalently, this means that for v,w € V, the inner
product (v, w) is redefined to be (f(v), f(w)) and then V' is completed with respect to this new
inner product. Similarly, by the change of Hilbert structure on V' by f we mean replacing V'
with V and f with the identity map V' — V. Equivalently, V' is replaced with f(V') and is
given the Hilbert structure induced by f from V. A change of Hilbert structure on a Hilbert
['-module is the result of applying a finite sequence of changes as above. This change preserves
dimension.

4.6. The Atiyah conjecture. For the moment, let I' be any torsion-free group and M be an
m X n-matrix with entries in CI'. The right multiplication by A gives a ['-equivariant bounded
map 7y : £2(T)™ — (*(T')". The (integral version of) Atiyah conjecture states that dimr Ker 73,
is an integer. It came from a question by Atiyah in [1].

Linnell proved in [14] that the Atiyah conjecture holds for free groups and, more generally,
for extensions 0 - H — I' - I'/H — 0 where H is free and I'/H is elementary amenable. This

in particular includes the infinite surface groups since H can be taken to be the commutator
of T.

4.7. Lifts. A family F of functions on a cell complex ¥ will be said to be inscribed in Comp(Y')
if for each f € F there exists K € Comp(f() such that supp(f) C K.

Suppose p : Y — X is a leafage as in 2.4, a family F C C’Z»(Z) (X) is inscribed in Comp(X),
and F does not contain the zero function. For f € F, let K(f) denote the component of X
containing supp(f). Define the lift of F to Y via p as

pI(F):={fo | f € F, LeComp(Y), p(L) = K(f)} € CP(¥),

where ff : Y — C is defined on L to be the restriction of f op to L and zero on any other
component of Y. Then p'(F) is inscribed into Comp(Y).
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4.8. Matrix stacking. Suppose U, V, and W are finite orthogonal sums of copies of £2(T"), M
and N are finite matrices with entries in CI', and 7y : U — V and 75 : U — V' are the maps
given by the right multiplication with M and N, respectively. Let [M|N] be the matrix obtained
by placing M and N horizontally next to each other. The right multiplication by [M|N] gives a
map Tn] - U — V@V’ which we also denote [7y/|7y]. Clearly, Ker [r3|7n] = Ker 7y NKer 7.

Similarly, if 7,y : U — V and 7 : U’ — V are given by matrices M and N, the map
[M] U@ U — V is given by stacking the matrices M and N vertically. Then Im [%] =

TN
Im 7y 4+ Im 7.

An obvious but important observation is that stacking two matrices with entries in CI'
produces a martix with entries again in CI'.

Theorem 10. Let I' be a group satisfying the Atiyah conjecture, M, P, ) be finite orthogonal
sums of copies of £*(T'), and f: M — P and g : M — Q be Hilbert T-module maps such that
for each element e of the standard T'-basis in M, f(e) and g(e) are finite linear combinations
of elements of the standard I'-invariant bases of P and @, respectively. Then

(1) dimp [Ker fNKerg| € Z and
(2) dimp [(Ker f)* NKerg| € Z.

Proof. The assumptions imply that the maps f : M — P and g : M — (@) are given by the
right multiplication with finite matrices whose entries are in CT'.

(1) follows immediately from horizontal matrix stacking and the Atiyah conjecture.

(2) Denote h:= f*o f: M — M. Since h is selfadjoint, we have

Imh = (Ker h)* = (Ker f)*,
where the orthogonal complements and closures are taken in M. Then
(Ker f)* NKerg =ImhNKerg,
h~'(Imh NKerg) = h~(Imh N Kerg) = Ker (g o h).
Since I' satisfies the Atiyah conjecture,
dimr Kerh € Z,
dimp A~ *(Im h N Ker g) = dimr Ker (go h) € Z.
Since Im h N Ker g C Tm A, the sequence of N (T")-modules
0 — Kerh < A '(Imh N Ker g) A ImhnKerg — 0
is exact, then
dimp [Im h N Ker g} = dimr [hil(hn h N Ker g)} —dimr Kerh € Z.
In the diagram

0 —=ImhNKerg—sImh—2Im(goh) —=0

]

0 —Imh N Ker g— Im h —=Im (g o h) — 0,
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the bottom row consists of Hilbert I'-modules and is weakly exact, and the top row consists
of N(T')-modules and is exact. The last two vertical arrows preserve dimension, hence by
additivity the first vertical arrow does as well, hence

dimp [(Ker ) NKer g] = dimp [ImhNKerg] = dimp [Imh N Kerg] € Z.
0

The first homology of a graph is the kernel of the boundary map in dimension 1. Theorem 10
is a statement about kernels, and it will be used for graphs (theorems 16 and 29 below). We will
also want to consider surfaces and complexes. For them, the following more general statement

will be needed (in Theorem 26).
Theorem 11. Suppose the diagram

0 <20, <2 c,<?
j@o lsol L@z
0 o< <2y <2

is commutative, its rows are chain complexes of Hilbert I'-modules, each term is a finite sum
of several copies of (*(T'), and each arrow is given by the right multiplication by a finite matriz
with entries in CU. If I' satisfies the Atiyah conjecture and b, : H,(C.) — H,(C") is the map
induced by o, on the nth £*>-homology, then dimp Ker ), € Z.

Proof. The best proof is by a spectral sequence. Replace ¢, with £¢,, appropriately so that
the diagram becomes anticommutative, and extend 0 and ¢ by zeros so that it can be viewed
as a first-quadrant double complex. The total complex is the chain complex Tot, with Tot, =
C! @& C,—1 and the total differential D := 0 + . The fact that the spectral sequence for this
double complex converges to the £2-homology of Tot, holds by applying the usual proof to the
category of Hilbert modules and taking closures of images rather than images in appropriate
places. Alternatively, one can work in the category of N (I')-modules, take homology in the
usual algebraic way, and disregard modules of dimension 0.

The zeroth differential in the spectral sequence is the horizontal map 0, so the first page is

R A

0 Hy(C)  H(C)  Hy(Cl)

on which the first differential is the vertical map . Taking the £*>-homology with respect to ¥
gives the second page

0 Ker 1) Ker 1 Ker 1)

0 Coker 1)y Coker 1, Coker 1)y
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on which the spectral sequence collapses. Here Coker v, := H,,(C")/Im),. Then
H,(Tot,) = Coker 1, ® Ker,,_1.

The total differential D is given by the right multiplication with a finite matrix with entries
in CI'. (This can be viewed as “multiple matrix stacking”.) Since I' satisfies the Atiyah
conjecture, this implies that dimp Ker D,, € Z and dimr Im D,, € Z for each n. Thus

(14) dimpr Coker v, ® Ker,_; = dimpr H,(Tot,) € Z.
For n = 0 this means that dimr Coker ¢y € Z. This together with
dimp Coker ¢ @ Ker 1)y = dimp H; (Tot,) € Z

implies that dimp Kery € Z. Continue inductively using (14) to deduce that dimp Ker ¢, € Z
for all n. ([

5. GRAPHS.

In this section we discuss relations among graphs, reduced rank, and ¢2-Betti numbers.

5.1. Flowers and gardens. Recall that by a graph we mean a 1-complex. A tree is a graph
homotopy equivalent to a point. A forest is a graph whose connected components are trees.

A flower will be a graph homotopy equivalent to a circle. A garden will be a graph such that
each of its connected components is a tree or a flower. A subgarden of a graph Z is a subgraph
that is a garden. A mazimal subgarden of a graph Z is a subgarden maximal with respect to
inclusions.

5.2. The reduced rank of graphs. For a finite graph Y, define its reduced rank by
7(Y) = Z max{0, —x(K)}

KeComp(Y)

in analogy with (1). This includes the empty case 7()) = 0. If Y is non-empty, one checks that

rY)= > max{0rk(m(K)-1}= > #(m(K)).

KeComp(Y) KeComp(Y)

5.3. Essential sets. Let Z be any finite graph. An edge o € £,(Z) will be called essential
in Z if 7(Z \ {o}) = #(Z) — 1. More generally, a set of edges F C (7)) is essential in Z
if 7(Z\ E) = 7(Z) —#E. A mazimal essential set is an essential set that is maximal with
respect to inclusions. For an edge o, denote 0~ and o* the initial and the terminal vertices
of o, respectively. The following lemma is an easy exercise and will not be used in this paper,
so we skip the proof.

Lemma 12. Suppose Z is a finite graph and E C 34(Z). The following statements are equiv-
alent.

(a) E is an essential set.
(b) For each e € E, the component of Z \ E containing o~ is not a tree and the component
of Z \ E contaning o™ is not a tree.
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And the following statements are equivalent.

(a') E is a mazximal essential set.

(b') 7(Z \ E) = 0 and for each e € E, the component of Z \ E containing o~ is not a tree
and the component of Z \ E contaning o is not a tree.

() Z \ E is a mazimal subgarden of Z.

(d) F(Z\E)=0=7(Z) — #E.

The equivalence of (¢/) and (d’) shows that maximal subgardens play the same role for the
first £2-Betti numbers as maximal subtrees play for the usual first Betty numbers.

5.4. (*-Betti numbers for graphs. The integrality of /2-Betti numbers for free groups can
be deduced from the Atiyah conjecture for free groups by Linnell’s result [14]. We present an
elementary proof of integrality and an explicit description of the numbers.

Lemma 13. Suppose I' is a group.

(a) If T acts freely and cocompactly on a graph Y whose components are infinite, then
(15) BP(V:D) =0 and B2 (V:T) = —x(T\Y).

(b) If T acts freely and cocompactly on a graph Y whose components are finite and the
stabilizer of each component of Y 1is trivial, then

b (V;T) = by(T\Y)

for all i, where b;(T\Y) are the usual Betti numbers of T\Y .
(c) If T is torsion-free and acts freely and cocompactly on a graph Y then all the (*-Betti
numbers 652)(3/; ') are integers.

Proof. (a) Let Y := I‘\f/, ¢:Y — Y be the quotient map, then
y= || K Y= || ¢'K), and ¢ (K)/T=K

KeComp(Y) KeComp(Y)

Each term in (15) is additive under disjoint unions, so it suffices to prove the statement
assuming that Y is connected. In this case the induced I'-action on Comp(Y') is transitive.
Pick any L € Comp(Y) and denote I'y, := Stabr(L), then Y =T\Y =T'/\L,soq¢: L - Y

is a connected cover. There is an isomorphism of I'-sets Comp(Y) = I'/I";, which induces an
isomorphism of I'-graphs

Y = Comp(Y) x L= (I'/T;) x L=TInd}., L
and consequently an isomorphism of Hilbert I'-modules

CA(Y) = Indf, C(L).

*

Since induction commutes with homology,

HP(Y) = Indf, HP(L).
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Since induction preserves dimension [15, Lemma 1.24],
dimp, H(L) = dimp H(Y).

The usual Euler characteristic x(Y') can be computed as the alternating sum of £2-Betti numbers
for the pair (L,I') [15, Theorem 1.35(2)], so

X(X) = b2 (L;T,) — 02 (L;Ty).

Since L is an infinite connected graph, it is an easy exercise to see that every ¢?-summable
O-chain in L can be approximated by the boundaries of finitely supported 1-chains in L. (Or

see [15, Theorem 1.35(8)].) Therefore, b (L:T',) = 0, which implies (15).
(b) The argument as in (1) shows that Y := I'\Y is connected, Y = 'y \ L, where L € Comp(Y')
and 'y := Stabp(T"). Since ' is trivial then Y = L and

b (V:T) = 0P (L;Tp) = dimp, H® (L) = dim H;(L; C) = b;(Y).

(c) The stabilizers of the finite components of Y~ are finite, hence trivial. Now the statement
follows from (a) and (b) by additivity. O

The following observation will allow restating SHNC in analytic terms.

Theorem 14 (Restating reduced rank.). If ' is a group, Y is a forest with a free cocompact
[-action, and Y is the (finite) quotient of Y by ', then

F(Y) = b2 (VD).

Proof. 7(Y) and b?)(f/; I') are additive under disjoint unions, so as in the proof of Lemma 13

~

we can assume that Y is connected and Y = I'[\ L, where L € Comp(Y') and ', := Stabr(L).
Then L is a tree and I';, = m1(Y") acts on L freely and cocompactly. If L is infinite then T'y is
free and infinite, hence —x(Y) =rk I'y, — 1 > 0. By Lemma 13(a),

BP(V5T) = —x(Y) = max{0, —x(Y)} = #(Y).
If L is finite, then 'y, =1 and Y = L. Since H;(L) = 0, then by Lemma 13(b),
B (V:T) = by(L) = dim Hy (L) = 0 = max{0, =1} = max{0, —x(L)} = 7#(Y).
Ol

5.5. Atomic decompositions of graphs. Let v : S — X be an immersion of finite graphs,
where X is a connected finite graph with 7(X) = 1, for example as in 3.6. Let m := 7(95),
choose any maximal essential edge set E = {e1,...,en} in S (see 5.3), let S be a copy of

(S'\ E)U{e;}, and define
S* = s
i=1

Let ¢; : S? < S be the inclusion map and ¢ : S®* — S be induced by ¢; termwise.
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Consider the maps v¢; :=yo¢; : S = X. Let ¢ : S* — X be induced by ;. Then we have
the commutative diagrams

(16) St 8 Se LS
O N
—X X —X.

Define graphs SZ‘ , Se and maps ¢, 1@, o, 12) by pulling back the above diagrams by the
universal cover map Xa — X as follows.

(17) S - S Se ? S
NN\ e N\
v Go S ¥ ge ¥ S
¥ l’y P l'y
X X 5 X X 5
Zx Pj\ :;x Pj:\
Xp =——n— X, Xp =—— X,

Let A be the diagonal subgroup in T’ x T'. The free A-action on Xa induces free A-actions on
S , S; , and Se.

Define graphs Sp, S° and maps ®i, Ui, ¢, ¥ by pulling back diagrams (16) by the composition
pxoqx: X — X asin (7).

18) G e g
" S N B ¥ Go ¥ S
Pxozx pxoq;\ pxozx pqu:\

The free T' x D-action on X induces free T’ x T-actions on 5'7 éz’, and S°
Then S® = | JI", S7. It seems reasonable to call the graphs S7 atoms of S, S* an atomic
decomposition of S, ¢ : S* — S an atomic map for S, and similarly for S and S,
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The vertical and horizontal maps in the diagrams (17) are finite-to-one, so they induce chain
maps on (2-chains C!?(-) and on the ¢2-homology H(-).
For each i, define

Lemma 15.
(a) T is a garden.
(b) T is A- -invariant.
(c) ps'(T) =T
(d) A\T T.
Proof. (a) By the definition of atoms S,

T = o591 Je(S3) = [(S\B)U{e}] n|J[(S\ B) Ufe}] = S\ B.
J#i J#1
Since E is a maximal essential set, S\ E is a garden.
(b) The preimages of cells in X under py : XA — X are exactly A-orbits. Since S; is the
pull-back of S?, preimages of cells in S? are exactly A-orbits in SZ' , SO S; is A-invariant.
(c) A subset @ C S is called pg-saturated if s (ps(Q) = Q. If Q,Q C S are pg-saturated
then Q@ N Q" and Q U Q' are pg-saturated and

ps(@NQ) =ps(Q) Nps(Q),  ps(QUQ) = ps(Q) Ups(Q).

The preimages of cells in S under pg : S — S are exactly A-orbits. Then Q C S is pg-saturated
if and only if it is A-invariant. S® is A-invariant, hence $(S?) is A-invariant, hence $(S?) is
pg-saturated, and any unions an intersections of such are pg-saturated.

Since px : XA — X is surjectitve then its pull-back pge : 5‘; — S? is surjective for each 1.
Thus

ps'(T) = ps'[e(S7) N Je(S)] = b5 [e(pse (59)) N o (pse (S
J#i J#i
= ps' [ps(@(S) N U ps(@(5)] = ps' [ps(2(S0) N J¢(59)]
i it

=5 (ps(1) =T
(d) pgl(T) = T and preimages of cells in S under pg : S — S are exactly A-orbits, hence
A\T = T. O
Theorem 16. Let I' := m(X) and ¢ : S®* — S and ¢ : S* — S be atomic maps as above.
Then
(a) for each i, 7(S?) =1, or equivalently, ( (S),I) =1,
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(b) the induced maps v; - H(S®) — H(X) and ¢ : H(S®) — H(S) are weak isomorphisms of
Hilbert A-modules, X

(¢) the induced maps ; : H(é,’) — H()?) and ¢ - H(S*®) — H(§) are weak isomorphisms
of Hilbert T" x I'-modules.

Proof. (a) Adding an edge to a finite graph increases reduced rank either by 0 or by 1. Since
E is essential, adding each edge e; € F to S\ F must increase reduced rank by 1, because
otherwise adding E to S\ E would not increase reduced rank by #FE. Since E is maximal,
7(S\ E) = 0. It follows that 7(S7) = 1.

(b) We have the induced diagrams on ¢*-chains

(19) CP (&) 0@ () CP (&%) 2 ()
j"/;z l‘f ld; lﬁ
c® (XA) = C'»EZ)(XA) c® (XA) = C»EQ)(XA)

and on ¢>-homology

(20) H(S:) —2 H(S) H(S*) —2—H(S)
jjl;i lj jj[l t@
H(Xa) ==H(Xa) H(Xa) ==H(Xa).

Since 7(S?) = 1 = 7#(X), A\S* = S, and A\ X = X, then by Theorem 14,
dima H(S?) = 7#(SP) = 1 = 7(X) = dima H(X4).

Ker [¢; : H(S?) — H(X4a)]
= H(S?) NKer [ : C1(57) = O (Xa)]
= Ker [9: CP(S7) — CP(SH] N Ker [¢; : CP(5) — CP(Xa)],
hence by Theorem 10(1),
dimpa Ker [zﬂz - H(S?) — H(XA)} €Z.
The map Ui : H(S’;) — H(X A) 18 not zero because components of SZ’ are mapped injectively

into Xa. Hence

dima Ker [1&Z CH(S?) — H(XA)} =0,

so ; : H(S?) — H(X,) is injective, and therefore is a weak isomorphism.
The same argument shows that ¢; : H(S?) — H(S) is injective for each i. Since

dima H(S*) =) dima H(S}) =) 1 =m =7(S) = dima H(S),
i=1 i=1
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it only remains to show that the map

is injective. This is equivalent to saying that for each 7,
(21) G(H(S)) N _@(H(S))) = 0.

i
¢; is a pull-back of the inclusion map ¢;, so it is injective, i.e. @; : SYZ' — @Z(SZ') is an
isomorphism. Then ¢(H(S?)) = H(p(S?)), and (21) is equivalent to

H(p(S7)) N 3_H(4(57)) = 0.
J#i
Since A\'f’ = T and T is a garden by Lemma 15, we have
dima H(T) = #(T) = 0.

Then
H(2(50) N Y H(p(5) = () nH(UJ#(S)))
j#i JFi
= (s nJaS)) =ni) —o,
i

which proves (21).
(c) By Lemma 9, X = Ind*" XA, hence the diagrams

(22) H(Sp) —2 H(S) H($%) ——~ H(S)
o s b s
H(X ) =——H(X) H(X ) =— H(X).

are obtained by applying IndgXF to diagrams (20). Induction preserves weak equivalence. [J

6. CHANGE OF SUBGROUPS.

We describe a procedure that changes the stabilizers of components in Y’ and Z'. Eventually
we will make all the stabilizers the same; this will be needed later to define arrangements.

6.1. Induced systems.
Lemma 17. Suppose

I

(23)

=
<~ U»
> E— Ny

~
|
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is part of a system S as in (5) and 'y and 'y are arbitrary subgroups of I'. Denote
Y, =T,\Y,  Z:=T,\Z,  S;:=(T xy)\S.

Then the quotient maps gy, : Y - Yi, qz, 7 = Zy, and gs, : S - Sy fit in a commutative
diagram

(24) Sy 7 Zy
Yu
7
asy
S B
_ S ﬁ]j
o
Y; - X
qk /

in which the two squares (X, Yy, Zy, Sy) and (X,Y/, Z, §) are pull-back diagrams.

Proof. Diagram (23) is a pull-back diagram being part of a system. It remains to check that
the other square in (24) is a pull-back diagram. The preimage of a cell ¢ in X under & can be
identified with a~*(c) x I, its preimage under 3 with 37!(¢) x I, and its preimage under @ o i
with a™ (o) x 7!(0) x T x T, which is the product of the other two. The restrictions of the
quotient maps gy, qz,, qz, to these preimages can be identified with the quotient maps

a (o) xT = a o) x (['/Ty),
B7Ho) x T = 7o) x (T/Ty),
a o) x o) x T xT — a (o) x Bl (o) x (T x T)/(Ty x Ty)).
Now it remains to note that the fiber product structure is preserved by the quotients: a~!(o) x

B (o) x (T x T)/(T'y x T'y)) is the product of a~*(c) x (['/T;) and S~ (a) x (T'/Ty). O
Let (8, S) be a pair of systems as in 3.4 and G be some subgroup of I'. We will be particularly

interested in applying Lemma 17 to these two systems in the case when I'y := G and I'y := G.
Recall that Z 2 I'\Z and 2/ = T\Z', and pz : Z — Z and py : Z' — Z' are the quotient
maps. Denote
Yo :=G\Y, Zg=G\Z, Sg:=(GxG\S
Y=G\Y', ZL:=G\Z, S :=(GxG\,
and let gy, : Y = Y, qs. - S — Sas Qv - Y — Y/, and gg,, : S — S¢; be the corresponding
quotient maps. By Lemma 17 they fit in the two commutative diagrams



THE TOPOLOGY AND ANALYSIS OF THE HANNA NEUMANN CONJECTURE

(25) S Z,

G
YG
7
QSG
rG .
B
Ba
/ . ¥
N\
Y

Yo

q

vg
S
i
«
/

(26) S, Z

/
[ Ze] G
\YG
A
9sq
e
! B

7
Ba

U»

29
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whose squares (X, Yq, Za, S¢) and (X, Y/, Z,, S;) are pull-back diagrams. Hence the maps
ag, Pe from (25) and the quotient map py : X — X generate another system

(27) Za
‘YG
€] | ZG
[ Ze!
. Bo
Sc : 5o
b
\ — o X
ac bx
N |
\ s X.

This defines complexes Yg, Zg, g@, é‘g, and the maps to and from them. S¢ is a ['-system,
and will be called the system induced by S from I' to G.
Similarly, the maps ag and B¢ from (26) and px generate the system

(28)

called the system induced by S’ from I' to G. This defines complexes YC’,, Z&, 5”@ S’&, and the
maps to and from them. S¢ is a subsystem of S,.

6.2. Symmetric systems. We will show that it suffices to check SHNC only for graph systems
of certain special type.

Definition 18. Assume that (S, S) is a pair of systems as in 3.4. The system S’ will be called
symmetric if it has the following additional properties:

o Y =7
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e the covers a:Y' — X and f: Z' — X are isomorphic, and
e there exists is a normal subgroup G in I' such that Stabr(K') = G for each K' €
Comp(Y") and for each K' € Comp(Z').
A pair of systems (S',S) will be called symmetric if S" is symmetric. A pair of systems (S',S)
will be called connected if both S and S’ are connected, that is if X, Y, Z, Y', and Z' are
connected.

In particular, the above covers a : Y' — X and 8 : Z” — X are the regular covers corre-
sponding to the normal subgroup G of I'. Denote I' :=T'/G.

Lemma 19. Let Y' be part of a connected symmetric system S'. Then the induced T-action
on Comp(Y') is free and transitive.

Proof. Freeness follows from Theorem 7(d) and transitivity from Theorem 7(e). O

7. RESTATEMENTS OF SHNC.
In this section we provide several equivalent restatements of SHNC.

Lemma 20. For any graph system S as in 3.6,
B2 (ST x ) = b?(S; A).

For a proof, one can use Theorem 14, and the isomorphisms (I" x F)\§ ~ Sand I\S = S

to deduce that both bgz)(ﬁ; ['xT') and ng)(g; I') equal 7(S). We emphasize that there is the
following direct analytic proof that does not use reduced rank.

Proof. By Lemma 9, S = Indy*" S, hence
B (ST x I') = dimpyr H(S) = dima H(S) = b2 (3; A).

Lemma 21. The map
O : Comp(Y) x Comp(Z) — Comp(S)
defined by ®(K,L) := KOL C S is a bijection.
Proof. Since the restricted maps & : K — X and B . L — X are injective, KO L is isomorphic
to &(K)NpB(L). Since &(K) and (L) are convex in the tree X, then so is &(K) N G(L). Then
KOL is a connected component of S, so ® is well-defined. The rest is clear. O
Let A\I'/B be the set of all double cosets AgB for g € I and s : A\I'/B — T be a section

of the quotient map I' — A\I'/B. Then s(A\I'/B) is a set of representatives of double cosets.
We will use the notations

A =271 Az, ‘B = 2Bz 1.

For z € ', let t, : I'/(AN*B) — I be a set-theoretic section of the quotient I' — I'/(A N *B),
then t,(I'/(AN?B)) is a set of representatives for the left cosets of AN*B in I
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Denote
T(A,B):={(y,2) | z € s(A\I'/B), y € t.(IT/(AN*B))} CT x T.
Choose K € Comp(Y) and L € Comp(Z) such that Stabp(K) = A and Stabp(L) = B.

Lemma 22. For a connected graph system S, the map

~

T(A, B) — Comp(5), (y,2) = yKOyzL C S
s a bijection.
Proof. Injectivity.
yKOyzL =y KOy?L = KOL=(y "WK)O(( 'y /L) =
y 'y € Stabr(K) = A and z 'y 'Yz € Stabp(L)=B =
2€AYB = z=2 = 'y 'Y)zeB =
y 'Y €eANB = y(AN"B)=y(AN"B) = y=y.
Surjectivity. Each component of S has the form K'0L' for some K’ € Comp(}}) and L' €

A A A

Comp(Z). Since Y and Z are connected, then the I'-actions on Comp(Y') and on Comp(Z) are
transitive. Then K’ = uK and L' = vL for some u,v € T'.

Let 2 := s(A(u™'V)B), then z = au™'vb for some a € A, b € B. Let y :=t,(ua"' (A N“B)),
then y = ua™!c for some ¢ € AN “B = Stabr(K) N Stabr(zL). We have

¢cK=K, c2zL=zL, «'K=K, bL=L,
®(y,2) = yKOyzL = ua 'cKOua ezl
=ua 'KOua 2L = wa ' KOwbL = uKOvL.

Theorem 23. FEach of the following statements is equivalent to SHNC.
(a) For any graph system S as in 3.6,

b (ST X ) < b7 (V5T) -7 (Z3T).
(a') For any graph system S as in 3.0,
b7 (S;T) <bP(V;T) -2 (Z;1).
(b) For any connected graph system S as in 3.7,
BP(ST X T) < WP (V5T) -0 (Z:T).
(b') For any connected graph system S as in 3.7,
b7 (S;T) < b (V1) - b2 (Z;1).
(¢) For any connected symmetric pair of graph systems (S°,S) as in 3.7 and 6.2,
b7(S;T x T) < b2 (v;T) -6 (Z;T).
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() For any connected symmetric pair of graph systems (S°,S) as in 3.7 and 6.2,
WS T) < WP (VD) -0 (Z:T).
Proof. Lemma 20 implies equivalences (a) < (d'), (b) < (V'), (¢) < (¢/). The implications
(a) = (b) = (c) are obvious.
SHNC < (V). The assumptions of SHNC determine a connected graph system and vice

versa. Choose K € Comp(Y) and L € Comp(Z) such that Stabr(K) = A and Stabr(L) = B.
Using Lemma 22 and induction,

52 ($;T) = dimp H($;T) = dimr H( | | M)

MeComp(S)

= dimp H( |_| |_| yKO yzL)

z€s(A\I'/B) yet.(I'/(AN=B))

= Z dimp @ H(yKOyzL)

z€s(A\I'/B) yet. (T'/(ANZB))

= Z dimp Ind’y .z H(KO zL)
z€s(A\I'/B)

= Z dim gn-p H(KO 2 L)
z€s(A\I'/B)

= Y W(KOzL;ANB).
z€s(A\I'/B)

By Lemma 21, each KO zL is connected. Since it is isomorphic to a subset of the tree X,
each KO zL is a tree. ANZ*B is the stabilizer of KO zL C S, and the quotient

(AN*B)\(KDzL) = F\( |_| yKlfIyzL)
yet(I/(AN=B))
is isomorphic to one of the components of S, so in particular it is finite. Then by Theorem 14,
b (KOzL; AN°B) = #(AN“B).
This proves
(ST = Y FANB)= Y FANB).
2€5(A\I'/B) 2€s(A\I'/B)

The last equality holds because A N*B and A* N B are conjugates of each other. Theorem 14
also implies

b (Vi A) =7(A), b (Z;B) =F(B).
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The above three equalities show the equivalence of the inequalities

p2(9:T) <P (VD) - 6(Z:T)  and
Y, TANB)< ( ) - 7(B).

z€s(A\I'/B)

(¢) = (a). Consider any graph system S as in 3.6. Then it can be extended to a larger
system S§° as in 3.7 in which

e « and [ are finite covers,

the components of V° and Z° map isomorphically onto X

the stabilizers of the components of Y° are conjugates of some subgroup A° in I of finite
index, and

the stabilizers of the components of Z° are conjugates of some subgroup B° in I' of
finite index.

The T-actions on Y° and Z° induce a I-action on the finite set Comp(Yo) U C’omp(ZO), le. a
group homomorphism I' — Perm [Comp(Y°) LU Comp(Z°)], where Perm [S] denotes the group
of permutations of a set S. Denote

G :=Ker (I' - Perm[Comp(Y®°) L Comp(Zo)]).

(G is a normal subgroup of finite index in I" which stabilizes each component in Ve and Z°.
Consider the pair of systems (S&, S¢) induced by the systems (S°,S) from I' to G as in 6.1.
Since Y§ = G\f/o, Zg = G\Z", and the components of V° and Z° are copies of X, then each
component of Y5 and Z¢ is isomorphic to the quotient graph G\X . The components of Y3
one-to-one correspond to the components of 175 via the quotient map gy, and similarly for Z¢,
and Z¢,.

First we claim that for this induced pair (S&, S¢) the inequality

(29) 0P (S T x T) < b (Ve 1) - b5 (Z T)

holds. Replace Y4 with one of its components K, and Zg with one if its components L, and
use them to generate a system Tk 1 as in (27). Tk is a connected subsystem of Sg. Next
replace Y5 with its component K° containing K, and Z2 with its component L° containing L,
and use them to generate a system 7T ; as in (28). T ; is a connected subsystem of Sg. Since
K° and L° are isomorphic, (7x z, Tr. 1) is a connected symmetric pair, so the above inequality
holds for the system T 1, by the assumptions of (c). Sum up all such inequalities over all pairs
(K, L) € Comp(Yg) x Comp(Z¢) to obtain (29) for system Sg.
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It remains to show that inequality (29) for Sg implies the same inequality for the original
system S. This is done by tracing the definition of induced system:
b7 (ST x T) < b (Y T) - 07 (ZaiT) - &
_<SG) <r(Yo) -1(Zc) <«
b (5G><G)<b<2><y o) - v(2;6) =
)

b2 (3G x G) _ V. a) v2(Z;6) -
I'xT:GxG) ~— [I':G] I': Q|
b (ST x T) < b (V1) - b2 (Z;1).
This finishes the proof of Theorem 23. 0

We will say that SHNC' holds for S if any of the inequalities in Theorem 23 is satisfied.

8. SURFACES.

8.1. Surface systems. Generally, a surface system is a system consisting of surfaces. By
a surface we mean a 2-manifold that can be with boundary and not necessarily compact,
connected, or orientable. For the purposes of this paper, by a surface system S we will mean
a particular kind of a system that arises as described below.

Let X be a compact connected surface, possibly with boundary, such that y(X) = —1.
Denote I" := m(X). Since x(X) < 0, it is possible to put a hyperbolic metric on X with
respect to which its boundary is totally convex. The universal cover X of X can be identified
with a convex subspace of the hyperbolic plane H?2 and the [-action on X can be extended to an
isometric T-action on H2 such that X is the convex hull of the limit set of I'. Let py : X — X
be the quotient by I', equivalently, the universal cover map.

Given arbitrary finitely generated subgroups A and B of I', the quotients Y’ := A\X and
VARES B\X are hyperbolic surfaces with totally geodesic boundary. The quotient maps are the
covers of X representing the inclusions A CT"and B CT. Themapsa:Y' — X, 5: 7' — X,

i X =X generate a system as in (11) but consisting of surfaces.

Let K and L be the convex hulls of the limit sets of A and B in H2, respectively, then K C X
and L C X. If A or B is trivial, then its limit set is empty; in this case we define the convex
hull to be a point in X. If A or B is infinite cyclic, the corresponding convex hull is a line.
Such convex hulls still will be called surfaces, though degenerate ones.

Denote Y := A\K CY" and Z := B\L C Z'. Since A and B are finitely generated and I'
has no parabolic elements, then Y and Z are compact surfaces with totally geodesic boundary.
The above quotient maps « and 5 can be restricted to a: Y — X and §: Z — X. The maps
a:Y = X, B8:Z— X, and py : X — X generate a system S as in (5) but consisting of
surfaces. S is a subsystem of S°.

By a result of Scott [21, 22|, these restricted maps a : ¥ — X and 8 : Z — X can be
extended to finite covers a : Y° — X and f: Z° — X. Themapsa:Y° - X, 3:272° —- X,
and px : X = X generate a system S° as in (12), but again consisting of surfaces. S and S°
will be called surface systems corresponding to (I', A, B).
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One can work in the smooth category or triangulate all the surfaces involved to make them
cell complexes.

8.2. Conjectures for surfaces. Swarup observed that HNC can be restated as a question
about areas of surfaces. We want to ask a similar question about ¢?-Betti numbers, which
generalizes HNC.

Conjecture 3 (Surfaces). Let I' be the fundamental group of a connected compact surface X,
possibly with boundary, such that x(X) = —1. Let A and B be finitely generated subgroups of
m1(X). Then

bP(ANB) <bP(A)- b7 (B),

This conjecture implies the original HNC because one can replace graphs with homotopy
equivalent compact surfaces with boundary.

Conjecture 4 (Strengthened conjecture 3). Let I' be the fundamental group of a compact
surface X with x(X) = —1, possibly with boundary, and A and B be its finitely generated
subgroups. Then in the corresponding system S,

b7 (S;T) < bP (V1) -2 (Z;1).

Similarly, this conjecture implies SHNC. We note here that if either version of the original
Hanna Neumann conjecture can be proved by the methods of this paper, then the same proof
should work for its stronger surface versions stated above.

The following is a complete analog of Theorem 23 for surfaces, with the same proof.

Theorem 24. Fach of the following statements is equivalent to Conjecture 4.
(a) For any surface system S as in 8.1,

A

b (ST x T) < (V1) - 2 (Z:T).
(a’) For any surface system S as in 8.1,
b7 (S;T) < bP(V;T) -2 (Z;1).
(b) If § is any surface system as in 8.1 and S is connected, then
0P (ST % T) <oP(V;T) - b7(Z;T).
(b") If S is any surface system as in 8.1 and S is connected, then
b7 (S;T) < b (VD) - 0P (Z;T).
(c) If (8°,S) is a pair of surface systems as in 8.1 and it is connected and symmetric, then
by (S:T x T) < 0 (V:T) - 0(Z:T).
(¢") If (8°,8) is a pair of surface systems as in 8.1 and it is connected and symmetric, then
b7 (S;T) < bP (V1) -2 (Z;1).

(d) Any of the above statements with the additional assumption thatY, Z, Y°, and Z° are
orientable.
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To prove the equivalence of (d) to the rest, start with a surface system S and consider
orientable covers of Y° and Z°. This can be done by replacing I' with a subgroup I" of finite
index. Then replace & with the I'-system induced from I" to I as in 6.1.

8.3. (?-Betti numbers for surfaces. Similarly to graphs, the integrality of ¢2-Betti numbers
for surface groups can be deduced from the Atiyah conjecture for surface groups by Linnell’s
result. And again, we can give an elementary proof of integrality with an explicit description
of the numbers.

Theorem 25. Suppose I' is a group.

(a) If ' acts freely and cocompactly on a surface Y whose components are infinite, then
(30) PP(V:T)=0 and bP(V;T) = —x(T\Y).

(b) If T acts freely and cocompactly on a surface Y whose components are finite and the
stabilizer of each component of Y 1is trivial, then

b (V1) = by(T\Y)

for each i, where b;(D\Y) are the usual Betti numbers of T\Y .
(c) IfT is torsion-free and it acts freely and cocompactly on a surface Y, then all the (*-Betti
numbers 652)(3/; ') are integers.

Proof. (a) Since each component of Y is infinite, it is easy to see that each 2-dimensional -
cycle on Y must be 0, so the second ¢2-Betti number is 0. Then the proof goes word-by-word
as in Lemma 13.

(b) and (c) are proved exactly as in Lemma 13. O

8.4. Atomic decompositions of surfaces. Consider a surface system S as in 8.1 in which Y
and Z are compact and orientable. Let v : .S — X be the immersion coming from §. Then S is
orientable and can be decomposed as a finite union S = (J, S7 where each S} is either a pair of
pants or the torus with an open disc removed, and for each i # j, S N S} is a union (possibly
empty) of circles that are boundary components of S7 and S5. The gluing map [ |; S7 — S can

be called an atomic decomposition of S. Then atomic decompositions of S and of S are defined
by pull-backs exactly as in 5.5.

Theorem 26. Let T :=m(X) and ¢ : S®* — S and ¢ : S* — S be atomic maps of surfaces as
above. Then
(a) for each 1, BiQ)(H(S’i'), r)=1,
(b) the induced maps v; - H(S®) — H(X) and ¢ : H(S®) — H(S) are weak isomorphisms of
Hilbert A-modules,
(c) the induced maps ; : H(SAQ‘) — H()?) and @ : H(é') — H(§) are weak isomorphisms
of Hilbert T" x I'-modules.
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Proof. (a) follows from Theorem 25(a) because —x(S7) =1
(b) and (c) are proved exactly as in Theorem 16. We only need to use Theorem 11 instead

of Theorem 10(1) and observe that for each i, ¢(S7) N, ¢(S?) is a disjoint union of circles
in S. U

Similarly, atomic decomposition can be defined for the immersions a: Y — X and §: Z —
X.

9. THE DIAGONAL APPROACH.

Consider a graph system S as in 3.6 or a surf@ce system as in 8.1. In this section we work
with S, which can be viewed as the diagonal in S.

First assume that S is a graph system and let Z be part of S. Let Q C Q' be I-invariant
subgraphs of 7 , then

H(Q) C H(Q) S H(Z) € ¢ (2).
Lemma 27. If Q C Q' are I'-invariant subgraphs of Z, then
dimr [H(Q)" NH(Q")] € Z.

Proof. By Lemma 13, dimr H(Q) and dimp H(Q’) are integers, and
dimp [H(Q)" NH(Q')] = dimp H(Q') — dimr H(Q).
UJ

Lemma 28. Let Q C Q' be D-invariant subgraphs of Z such that Q' \ @ is exactly one I'-orbit
of edges. Then dimpr [H(Q)* NH(Q")] € [0,1].

Proof. Since H(Q) = H(Q') N 01(2)(@) C 0{2)(2), there is a (purely algebraic) injection of
N (T')-modules
HQ) . H(@Q) (@)
HQ) D0y Do)
@ HE)NAP@ Q)
or, if one prefers working with Hilbert modules, the orthogonal projection of H(Q)+ N H(Q’)
into C?(Q)* N C?(Q') is injective. Then

Q)

S dlmr _— =
(@)

0 < dimp [H(Q)* NH(Q")] =

O

Theorem 29. Consider a graph system as in 3.6. If Q C Q' are I'-invariant subgraphs of Z
such that Q' \ Q is exactly one I'-orbit of edges, then the following conditions hold.

(a) dimp [H(Q)* NH(Q")] is 0 or 1.
(b) There exists an orthonormal T-basis of H(Q)*NH(Q') inscribed in Comp(Z) (as in 4.7).
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(¢) If H(Q)* NH(Q') # 0 then the restriction §' : H(Q)* NH(Q') — H(X) of 3 is a weak
1somorphism.

Proof. (a) follows from lemmas 27 and 28.
(b) If dimp [H(Q)* NH(Q')] = 0, the space is 0 and has the obvious empty basis, so we can
assume dimp [H(Q)* N H(Q')] = 1. It suffices to prove the statement in the case when the

T-action on Comp(Z) is transitive. Take L € Comp(Z) and denote B := Stabp(L).
By Theorem 7(e) we have the orthogonal decompositions

H(Z)= €D H(gL),

gel'/B

H(Q) = €P H(Q) NH(gL) = € H@QngL),
gel'/B ger/B

HQ) = @ HQ)nH(gL) = € H(Q NgL).
gel'/B g€l'/B

This implies
H(Q)* NH(Q) = €D [H(QNgL)* N[H(Q NgL)]

gel'/B
= P (H@QN L) N[HQ NL)).
gel'/B
Denote
W= [H(QN L) NHQ NL),
then W is B-invariant and
HQ)' NH(Q) = P W =Indy W,
ger/B

dimp W = dimp Indy W = dimp H(Q)* N H(Q') = 1.

Since B < T, then B is free. If B is trivial or cyclic, then H(Q') € H(Z) = 0 and we can
take the empty basis for H(Q)+ N H(Q'). Now assume that B is of rank > 2, then it is an
ICC group, that is every nontrivial conjugacy class in B is infinite. Then N(B) is a I factor
([12, Proposition 1.4.1}). Hilbert modules over II; factors are uniquely determined by their
dimension, therefore W is isometrically isomorphic to £?(B) as a Hilbert B-module. This allows
choosing an orthonormal B-basis in W C H(L) (consisting of one vector). This basis is inscribed
in Comp(Z). The same vector forms an orthonormal I-basis of H(Q)* N H(Q') = Ind% .

(c) Since
dimp H(Q)' NH(Q') =1 = dimp H(X),

~

it suffices to show that 3’ : H(Q)* N H(Q') — H(X) is injective.
Let for := [01]qer] be the stack of the maps

0:C(2) P (2)  and gy :CP(2) - CP(2),
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where 0, is the boundary map and q¢ is defined on the basis 21(2 ) by

_Je ife ¢ 31(Q),
4e(e) = {o if e € 21(Q").

The map fg = [01]qg] is defined similarly to fo. We have
Ker fo = Ker 8 N Ker g = H(Z) N (@) = H(Q"),
(Ker fQ)J_ = H(Q)J—a

where the orthogonal complements are taken in C’F)(ZA ).
The maps 01, qg, q¢' and 3 are I'-equivariant and they send basis elements of their domains
to finite linear combinations of basis elements in their target, hence fg and [fq/|5] are such as

well.
Ker 3/ = H(Q)* NH(Q') NKer 3 = (Ker fo)* NKer for N Ker 3 = (Ker fo)* N Ker [for|f],
then by Theorem 10(2),
dimr Ker #' = dimr [(Ker fo)*t NKer [fQ/]BH e

Then dimp Ker 3 is 0 or 1. The basis in part (b) above is inscribed into Comp(Z ), and the
restriction of B to each component of 7 is an 1somorphs1m This implies that B’ maps each
basis element to a non-zero element in H(X ) SO ﬁ’ is not the zero map. Then by the additivity
of dimension,

dimp Ker f' < dimp [H(Q)* nH(Q")] =1,
hence dimr Ker 3/ = 0 and /' is injective. O

Theorem 30. For any graph system S as in 3.6 there exist orthonormal I'-bases B of H(z)
and B° of H(Z°) such that

1) BC B,

2) B is inscribed in Comp(Z),

3) B° is inscribed in Comp(Z°), and

(4) for each b € B°, the restricted map § : span(Tb) — H(X) is a weak isomorphism.

(
(
(

Proof. Choose a finite sequence of I'-invariant subgraphs

QC..CQC...CQ,=2°

such that Q)¢ has no edges, Q); = Z for some [ , and each @); is obtained from @Q);;; by removing
one I'-orbit of edges.
We have

H(Qo) € ... CH(Q) € ... H(Qn) = H(Z").
Inductively on 4, for each i such that H(QZ) # H(Q@H) add a I'-basis vector constructed in

A~

Theorem 29(b). By Theorem 29(c), § : span(I'b) — H(X) is a weak isomorphism for each
be B°. O
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It should be possible to generalize the argument of Theorem 29 to surfaces by adding one
atom of a surface at a time instead of edges in a graph, but the proof becomes more involved.
The reason is that if @ is a union of atoms of a surface Z and Q' is obtained from Q by gluing
another atom, then H(Q) is not automatically a subset of H(Q'). So in order to state an analog
of Thorem 29 for surfaces, one would need first to replace H(Q) and H(Q’) with their images

A A

under the injective maps H(Q) — H(Z) and H(Q') — H(Z). This would imply an analog of
Theorem 30 for surfaces. To avoid technicalities we content ourselves with proving the following
weaker version of Theorem 30.

Theorem 31. For each surface system S as in 8.1, there exist (not necessarily orthonormal)
T-bases B of H(Z) and B° of H(Z°) such that
(1) BC B,
(2) B is inscribed in Comp(Z),
(3) B° is inscribed in Comp(Z°), and
(4) for each b € B°, the restricted map § : span(I'b) — H(X) is a densely defined injective
map whose image is dense in H(X).

Proof. Take an atomic decomposition Z = |JZ? of Z as in 8.4. For each atom Z® pick an
orthonormal T-basis inscribed in Comp(Z?). The disjoint union of such gives an orthonormal
I-basis of Comp(Z*). Its image under the weak isomorphism ¢ : H(Z*) — H(Z) is a T-basis
of H(Z) inscribed in Comp(Z). This extends similarly to a basis of H(Z°). The last property
(4) follows from the fact that ¢; : H(Z?) — H(X) is a weak isomorphism (Theorem 26(b)) and
the commutativity of diagram (20). O

The next result says that a stronger version of Theorem 30 would imply SHNC. It uses
changes of Hilbert structures discussed in 4.5.

Theorem 32 (compatible Hilbert structures). Suppose
e S is a graph system as in 3.6 or a surface system as in 8.1,

~ ~

e H(X) is given a Hilbert I'-module structure, denoted H'(X),

e H(Z) is given the Hilbert structure H'(Z) lifted from H'(X) by pulling back the inner
product by the map H(L) — H(X) for each L € Comp(Z) and declaring H(L) and
H(L') orthogonal for distinct L, L' € Comp(Z),

e H'(Z) admits an orthonormal T-basis B inscribed in Comp(Z°) such that for each b € B

the restricted map 3 : span(I'b) — H(X) is an isometric isomorphism.

Then SHNC holds for S, i.e. b2 (S:T) <o(v:T)- o (Z;T).
Proof. Denote | := dimp H(Z) = dimp H'(Z), then B = {b; | i =1,...,1}. Themap v : §° — Z°
is a I'-leafage in the sense of 2.4. Let k° be the multiplicity of the cover a: Y° — X, then the
cover leafage v : S° — Z° has multiplicity k°. By the inclusion H'(Z) C H'(Z°) we view B as
a subset of H'(Z°).

We lift the Hilbert structure from H'(X') to H(Y°) and to H(S°), and denote these structures
H'(Y*°) and H'(S°), respectively.
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Let &7(B) be the lift of B to S° via © : S° — Z° as in 4.7. Each b; € B lifts to k° functions
(31) o1(b) = {by | j=1,....k°} CH(Y°0Z) C H(5°).
We now need the following lemma.
Lemma 33. The full lift
NB)={by |i=1,...,1, j=1,...,k°}
is an orthonormal T-basis of H(Y°0 Z) C H'(5°).

)
Proof. Take any K° € Comp(Y®), then K° = X, K°OZ ~ X0OZ = Z, and H(K°OZ) =
H'(Z). The horizontal arrows in the diagram

PO

K°e—% + X

(32) Z 2

are isomorphisms. ﬁT(FB) N H/(K°0Z) is the lift of TB under the isometric isomorphism
H’(KOD Z) — H'(Z). Since I'B is an orthonormal T-invariant basis of H'(Z), then &#7(I'B) N
H’(KOD Z) is an orthonormal basis of H'(K°0 Z). Combining these over all K° € Comp(Y°)

shows that oT('B) is an orthonormal ['-invariant basis of
HyY*0z)= € H(EK D).
KeeComp(Y°)
Since I' acts on I'B freely, then I' acts on 2T(I'B) freely. Obviously, #'(B) C »"(I'B). Each

[-orbit in I'B intersects B exactly once. This implies that each T-orbit in I'B intersects '(B)
exactly once. This implies the lemma. ([

Note that H'(S) C H/(Y°O Z). By (13) and the above lemma we have
b7 (S;T) = dimp H'(S) = > (b prlbig, H'(S)])),
ij
where pr is the orthogonal projection. Let M;; be the component of S° containing supp(b;;),
then b;; € H'(M;;). Denote M;; := Mg N S. Since H'(5°) is the orthogonal sum of H'(M°) over
M° € Comp(S°) and H'(S) is the orthogonal sum of H' (M° N S) over M° € Comp(S°), then
bij is orthogonal to H'(M°® N .S) when M° # M;;. Then we have

Z<bij7pr[bw7H,<S)])> = Z<bij7pr[bU7H,(M )])-

ij ij
Since bj; € H'(M7), H'(M;;) € H'(M7), and i maps H'(MS;) isometrically onto H'(K°) for
some K° € Comp(Y®), we have
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ij ij
By Lemma 33, 21(b;) C #7(B) in (31) is an orthonormal T-subbasis in H'(Y°0 Z) for each i.

Lemma 34. Under the assumptions of Theorem 32, for eacAh 1, [1 maps the orthonormal I'-
subbasis U1 (b;) bijectively onto an orthonormal T-basis of H'(Y°).

Proof. By the assumption of Theorem 32, for each i, B maps the orthonormal set (subbasis)
T'b; bijectively onto an orthonormal basis of H(X). Then for each K° € Comp(Y®), by the
isomorphisms in diagram (32), i maps 27 (Tb;)NH'(K°0 Z) bijectively onto an orthonormal basis
of H(K°). Combining these sets over all K° € Comp(Y°) we see that i maps Ti(b;) = 07(Tb;)
bijectively onto an orthonormal basis of H’ (?O) This implies the statement of the lemma. [J

This lemma implies
> (ialbig), prifu(by), H(Y)]) = > dimp H'(Y)
ij i
= dimp H'(Y) -1 = dimp H(Y) - dimp H'(2)
= b (V5D - b7 (Z;T).
Combining the above equalities and inequalities gives
b (ST < 7 (VD) b7 (Z:T),
which is equivalent to SHNC by Theorem 23. This finishes the proof of Theorem 32. 0

~

Considering the standard Hilbert structure on H(X) in Theorem 32 is not enough, as the
following example shows.
Example. Consider a graph system & in which g : Z — X is the following immersion of
graphs.

a P

, > b
A .
¢
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Consider the corresponding Z and Z. Both H(Z) and H(X) are isomorphic to ¢2(T'). It is
easy to check that the map 5 : H(Z) — H(X) is a weak isomorphism, but not an isometric

isomorphism. Equivalently, there is no orthonormal I-basis of H(Z) inscribed in Comp(Z) that
is mapped to an orthonormal T'-basis of H(X) under 3. So the standard Hilbert structures on

A~ A A~

H(X) and H(Z) do not satisfy the assumptions of Theorem 32. Since dimp H(Z) = 1, this can

be easily fixed by replacing H(X) with the Hilbert structure H'(X) induced from H(Z) by the
weak isomorphism f : H(Z) — H(X). Then Theorem 32 applies.

Corollary 35. If S is a graph system or a surface system such that b§2)(2;r) = 1 then
b (S T) <P (Vi) b2 1) = b (7).

Proof. The argument in the above example works for any graph or surface Z such that b§2) (Z ;T =

A

1: modify the Hilbert structure on H(X), then apply Theorem 32. O

This gives an alternative proof of the result of Tardos in [25]: if B is of rank 2 then SHNC
holds for (I', A, B); and it generalizes that result to surfaces. A similar result can be proved for
I'-complexes, where I is any group satisfying the Atiyah conjecture.

10. THE SQUARE APPROACH.

In this section we exhibit an approach to the conjecture that makes use of 3’, S °and ' x I'.

10.1. Diagonals in I' x T". Let T" be a group and A :={(g,9) | g € T'} CT xT'. By a diagonal
in I' x I' we will mean a left coset of A in the group I' x I.

We will always identify ¢2(I' x T') with ¢2(I') @ £(T"). For each diagonal D € (I' x I')/A,
(%(D) is naturally a subspace of ¢*(T' x I'). T' x I" acts on the set of diagonals (I' x I") /A by left
multiplication.

We will say that a family C C ¢*(T" x T) is inscribed in (I' x T')/A if for each ¢ € C there
exists D € (I' x I') /A such that supp(c) C D.

Let G be a normal subgroup of I" of finite index and denote n := [I', G].

Lemma 36. The set of G x G orbits in (I' x T')/A is the same as the set of G x 1-orbits in
(I'x T')/A.

Proof. The statement of the lemma is equivalent to saying that for each (a,b) € I' x T, the
G x G-orbit of the diagonal (a,b)A coincides with the G x l-orbit of the same diagonal, i.e.
that

(G % G) - (a,0)A = (G x 1) - (a,D)A.
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Each element of the left hand side is of the form (g,h)(a,b)A for some g,h € G. Denote
f = gab~thba=!. Since g,h € G < T, we have f € G.

f = gab thba™! s alglfa=b"thb
& (a™tg fa, b7 hb)(1,1) € A
& (al'g ' fa, b7 ThD)A = A
< (ga,hb)A = (fa,b)A
& (g:h)(a,b)A = (f,1)(a,b)A,
hence (g, h)(a,b)A € (G x 1) - (a,b)A. The opposite inclusion is obvious. O
Let @ C T be a set of right coset representatives for G\I'.

Lemma 37. (a) The following maps are bijections.
Do (TxT)/A ges (9. DA

['—» (I'xI)/A, g— (1, 9)A.

Equivalently, the left T' x 1- and 1 x I'-actions on (I' x I') /A are free and transitive.
(b) The following composition is a bijection.

GxQ—-T—(TxT)/A,
(9,0) = 99— (9q; 1)A.
Proof. (a) Injectivity follows from the equivalences
(9, 1)A = (h,1)A & (g7'h, A = A
& (¢7h, 1)(1,1) € A & g th=1 & g=h.
Surjectivity follows from Lemma 36 for G :=1":
'x1)-A=(TxI)-A=(IxI)/A.

The bijectivity of the second map is similar.
(b) follows from (a) because the first map G x @ — I is bijective. O

Denote
Diagg == {(¢,1)A | ¢ € Q} € (I x T)/A.

Lemma 38.

(a) #Diagy, = n.
(b) Diagy, intersects each G x G-orbit in (I' x T')/A exactly once, i.e. Diagy, is a set of
representatives of the G x G-orbits in (I' x T')/A.

Proof. Lemma 37(b) implies that #Diagf, = #Q = n and Diagy, intersects each G' x 1-orbit
in (I' x I') /A exactly once. By Lemma 36, the G x 1-orbits coincide with the G x G-orbits. [
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10.2. Ordered G x G-bases in (*(T' x T).

Lemma 39. For any G x G-basis C of (*(T xT) inscribed in (U xT')/A there exists a G x G-basis
C' such that

e C'C (GxG) and

e C' is inscribed in Diagl,.
Proof. Since C is inscribed in (I' x I') /A then (G x G)C is also inscribed in (I' x I") /A. The left
G x G-action on (G x G)C is free. For each D € Diagg,, (G x G)C N ¢*(D) is a Hilbert basis

of £2(D) invariant under Stabgxa(D) C G x G. The Stabgxg(D)-action on (G x G)C N ¢?(D)
is free. Choose a subset Cp C (G x G)C N ¢*(D) which is a Stabgxc(D)-basis of £2(D). Then

c= |] ¢

DEDiagg
is a G x G-basis of 2(I" x I') inscribed in Diagg,. O

We naturally view I' x " as a subset of ¢2(T' x T'); it is the standard Hilbert basis of ¢2(T"' x T).
A G x G-basis € of (*(T' x T') (as defined in 4.4) will be called standard if £ C T' x I'. Each
standard G x G-basis of £2(I' x I') is orthonormal and inscribed in (I'xT')/A. Lemma 39 implies
that there exists a standard orthonormal G x G-basis of £?(T' x T') inscribed in Diagg,.

We will tacitly assume that each G x G-basis C inscribed in Diagg is ordered, that is for each
D € Diagl,, the set (G x G)C N (3(D) is given an ordering.

10.3. Square maps. A square map will be a generic term for G x G-equivariant maps
P xT)—= AT xD) o HP(S) —» HP?Y)eHP(2),
where G < T' is a subgroup of finite index.

Let p1,ps : I' x I' = I be the projections on the first and second coordinate, respectively.
The following lemma is an easy exercise.

Lemma 40. For each diagonal D € (I' x I')/A, the restricted maps p1,ps : D — T are
bijections. In particular, py and py induce isometric isomorphisms py,py : £2(D) — (3(T') of
Hilbert spaces.

Let C be any G x G-basis of £(I" x I') inscribed in Diagg,. Define a function
(33) Ce: (GxG)C =T xT) by
Oele) == pi(c) @ pafe) € A(T) @ A(T) = AT xT), c€(GxG)C.

This map commutes with the left G x G-action. We would like to extend this to a map of
Hilbert G x G-modules O¢ : (2(I' x T') — £2(T' x T') and call it the square map corresponding
to C. Such extension might not always be possible. One way to avoid this extension problem
is to work with densely defined operators instead of bounded ones. Alternatively, one might
consider modules over the von Neumann algebra N (G x @) instead of Hilbert modules. We
will explicitly define the extension ¢¢ in 10.5 below as the composition ¢ o 75 ! for some
appropriately chosen ¢ and 7¢.



THE TOPOLOGY AND ANALYSIS OF THE HANNA NEUMANN CONJECTURE 47

10.4. Glide maps.
Definition 41. A (T',G)-glide map is a map 7 : (*(T' x T') — (*(T x T') with the following
properties.

o 7 is a map of Hilbert G x G-modules.
e 7 preserves diagonals, i.e. for each diagonal D € (I' x T)/A, 7(¢*(D)) C ¢*(D) and
the restricted map T : £2(D) — (*(D) is a weak isomorphism.

Let £ be a standard G x G-basis of ¢*(I' x T') inscribed in Diagg, (as in 10.2). For each
(ordered) G x G-basis C of £2(I' x T) inscribed in Diagf,, define a map

e (T xT) = (T xT)

as follows. The cardinality of a G x G-basis equals dimgxg £*(I'xT') = n?, hence #&€ = n? = #C
and we can choose a bijection 7¢ : & — C. Moreover, for each D € Diagg,, £ N 3(D) is
a Stabgx(D)-basis of (2(D), so #(E N (*(D)) = dimstapy, o(p) £*(D). The same argument
applies for C in place of £, hence #(&€ N £3(D)) = #(C N £*3(D)) for each D € Diagy,. Using
the order on C N ¢*(D) the bijection 7¢ : £ — C can be chosen canonically and so that for each
e € &, e and 7(e) are supported on the same diagonal D € Diagg. Next extend 7¢ to a bijective
G x G-map 7¢ : (G x G)€ — (G x G)C in the obvious way: 7¢((g,h)c) := (g, h) - (17¢c(c)). This
map sends an orthonormal G x G-invariant basis to a G x G-invariant basis, hence extends to
a map of Hilbert G x G-modules 7¢ : £2(I' x T') — ¢3(I" x I') which is a weak isomorphism.

Lemma 42. 7¢ : >(I' x T') — (2(' x I') is a (T, G)-glide map.

Proof. We only need to show that 7¢ preserves diagonals. Take any diagonal D" € (I' x ") /A
and €' € (G x G)ENL*(D'). Then € = (a,b)e for some a,b € I and e € &€, and e is supported
on the diagonal (a,b~')D’, hence (a~!,b~')D’ € Diagy,. By the definition of 7¢, 7¢(e) is also
supported on (a~!,b71)D’. Then the basis function
7e(€') = 7e((a, b)e) = (a,b) - (7c(e))
is supported on (a,b)(a!,b~1)D’ = D’. This shows that 7o maps the orthonormal basis
(G xGENG(D)

of /2(D’) to £*(D'). Since 7¢ is a weak isomorphism, the restricted map 7¢ : £2(D') — (?(D') is
as well. ]

Conversely, each glide map 7 provides a basis of £2(I' x T') inscribed in Diagg,, namely 7(&).
This means that choosing glide maps is equivalent to choosing (ordered) G x G-bases inscribed
in (I'x I')/A.

10.5. Glide square maps. Fix some standard G x G-basis € of £*(I'xT") inscribed in (I'xT")/A
(as in 10.2). Let C be a G x G-basis of £*(I' x T') inscribed in (' x T')/A (not necessarily
orthonormal) and 7¢ : (*(T' x T') — (T x ') be the glide map corresponding to C. Define a
function
(34) Oc:I'xT — (T xT) by

Oele) :==pi(re(e)) @pa(te(e)) € (M) @ A(T) = AT xT), ecD xT.
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The map {¢c : ' x ' — (' x T') is G x G-equivariant. This follows from the G x G-
equivariance of 7¢: for (g,h) € G x G,

Oellg, h)e) = pi(1e((g, h)e)) © pa(e((g, h)e))
= p1((g, h)1e(e)) @ pa((g, h)7e(e)) = (g [p1(7e(e))]) @ (A [pa(Te(e)]).

Lemma 43. For cach e € £, the maps ¢,v : G — (*(T') given by compositions
G—- (G x 1)€l>Tc((G x 1)(e)) = (G x 1)7c(e) LEQ(F) ,

G— (1 x Qe —=1((1 x G)(e)) = (1 x G)7e(e) —2= (2(T) |

respectively, are G-equivariant and extend to injective maps of Hilbert G-modules o, : (2(G) —
A(T).

Proof. We prove the statement for ¢. The G-equivariance of the compositions follows from the
G x G-equivariance of 7z and G x l-equivariance of p;.

For distinct g,h € G, (g x 1)e and (h x 1)e are supported on different diagonals in (I' x I') /A
by Lemma 37(a), hence (g x 1)7¢(e) and (h x 1)7¢(e) are also supported on different diagonals.
Therefore (G x 1)7¢(e) is an orthonormal Hilbert basis of its span in ¢£2(I" x T'). This also shows
that the first two maps in the composition are bijections and preserve orthogonality.

Let D € (I' x I') /A be the diagonal on which 7¢(e) is supported, then D = (a,b)A for some
(a,b) € T x I'. For each g € G, let h, :=ba'gab™'. Since G is normal, h, € G. Also,

(g,hg)D = (g, hy)(a,b)A = (ga, hyb)A = (ga,ba"'ga)A = (a,b)A = D.
This shows that (g, hy)7c(e) is supported on D, hence the map
0 : (G x )re(e) — *(D)

is well-defined by the formula 6((g,1)7c(e)) := (g, hy)c(e).
The diagram

(G x 1)7e(e) == 2(I).

commutes because the 1 x G- action on I' X I" does not change the first coordinate. The vertical
map is an isometric isomorphism. Hence it remains to show that 6 extends to a bounded
injective map span((G x 1)) — £*(T).

We first show that 6 is injective. Suppose (g, hy)7c(€) = (¢', hy)7c(e) for some g¢,¢" € G.
Since 7¢ is a (I', G)-glide map corresponding to the G x G-basis C, the set (G x G)7e(e) is a
G x G-invariant basis of its span, hence (g, hy) = (¢, hy), which implies ¢ = ¢’. Moreover,
the image of 0 is contained in (G x G)7c(e) N ¢3(D), which is part of a basis (meaning a
not-necessarily-orthonormal 1 x 1-basis) of £2(D). This implies that § extends to a bounded
injective map

0 : span((G x 1)1¢) — £2(I).
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O

Lemma 44. The map $c : T x T — (2(T' x T') in (84) extends to a G x G-Hilbert module map
Qe (T xT) — (T xT).

For each e € &, the restricted map ¢ : (G x Gle) — 2(T' x T') is injective. If C is
orthonormal, then ¢ : 02((G x G)e) — (2(T x T') is an isometric isomorphism onto its image.

Proof. Since I' x I' = (G x G)E and €& is finite, it suffices to show that for each e € &, the
restricted map {¢ : (G x G)e — (2(I' x ') extends to an injective G x G-Hilbert module map

Oe (G x Q)e) — AT x I).

Let ¢ and ¢ be the bounded injective maps from the previous lemma. If we identify
(G x Gle) = 2(G)&3(G) and (T x T') = 2(T') ® ¢%(T), then the restriction of p®1 :
(G) @ 2(G) — 2(T) @ (1) to (G x Q)e coincides with $¢ 1 (G x G)e — 2(T'x T), 50 p @
is the desired bounded injective extension. 0

Definition 45. The map ¢ : (2(T'xT) — 2(I'xT) in Lemma 44 will be called the (T, G)-glide
square map corresponding to C.

If O¢ is the map from (33), then the following diagram commutes.
I'xI'=(GxG)E

(G x G)C —=—= (I x I).

We also have the maps
(T xT)

S
TC | ©
AT xT) (T xT)
where « denotes a weak isomorphism.
Definition 46. The square map corresponding to C,
Oc AT xT) — (T x T),
is the densely defined operator ¢ o Tgl.
We use the arrow “—” to indicate densely defined operators. Then
(T xT)
S8
TC | ©
20 xT) 2~ (I x T

is an extension of the two previous diagrams. If C is orthonormal then ¢ is a bounded operator
defined on all of £2(T" x T).
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10.6. Lifting the basis in X. Consider the diagram
(35) X 2 x

X2 x

as in (7), where X, X are part of a graph system or a surface system. Each component of X is
mapped by ¢y isomorphically onto X. This follows from the prof of Theorem 7(g) by replacing
Y with X.

To distinguish between the two covers, relabel diagram (35) as

5 q1 5
X — X,

J

Xl L‘ X
Relabel I' x T as I'; x I'y. Since dimp H(X) = 1, then H(X) is isometrically isomorphic to ¢2(T).
H(X) has an orthonormal I'-basis consisting of one vector. Let e; be the copy of this vector
in H(X;) and ey its copy in H(X3).
Lemma 47. The lzfts ¢ (Dyes) and ¢3(T1ey) coincide and ¢} (Taes) is an orthonormal T' x T'-
invariant basis of H(X ).

Proof. Each Component of X is mapped by ¢s isomorphically onto X, and similarly for ¢;. This
implies ¢ (F2€2) =42 (Flel)

The I';-action on X induces a I';-action on X . This induces a I'y x I's-action on X . The
[-action on T'e; is free and transitive because {e;} is a T';-basis. Hence T'; acts on the lift

qI(FQQQ) = qg(Flel) and the induced I'y x I's-action on this lift is free and transitive. O

Denote -
E = qI(FQeQ) = qg(Flel).

£ is a I x I-invariant orthonormal basis of H(X ) inscribed in Comp(X).

Lemma 48. For graph systems and surface systems, the map n : H()?) — H(X)®H(X)
defined by n(e) := ql( )®qa(e) fore € € is an isometric isomorphism of Hilbert T' x T'-modules.
In particular, H(X) is isometrically isomorphic to (*(T x T') and n is the same as the standard
isomorphism (2(T' x T') — £2(I") @ £2(T).

Proof. Immediate from the proof of Lemma 47. O

Lemma 49. Let §° be a symmetric graph system or a symmetmc surface system. The map n

from Lemma 48 induces a map & : H(S ) — H(Y°) & H(Z°) which is an isometric isomorphism
of Hilbert I' x I'-modules. In particular,

dimpyr H(5) = dimpyp H(Y®) @ H(Z°) = dimp H(Y°) - dimp H(Z°)
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Proof. Since o : Y° — X and  : Z° — X are covers, then by Theorem 7(g), & and B
map the components of Y° and Z° isomorphically onto X. Then for each K° € Comp(Yo) and
L° e C’omp(Zo) the restricted maps & : K° — X and 3 : L° — X are the same as py : X 5 X,
and the diagram

(36) K°OL° —2> [

Ke % . X

is isomorphic to (35). The explicit isomorphism is given by the map © in (10). As in Lemma 48,
it follows that the map ¢ : H(K°OL°®) — H(K°) ® H(L°) is the same as the standard isomor-
phism 2(I'xT') — ¢*(T') ® ¢3(T), only here it is a G x G-module map rather than a I'x I-module
map. Now combine all such G x G-isomorphisms for all pairs (K°, L°) € Comp(Y ) x Comp(Z°)

into one I' x T'-isomorphism ¢ : H(S%) — H(Y°)&H(Z°). O

10.7. Bases and maps coming from systems. Recall that an orthonormal G' x G-subbasis
of /2(T' x T') is a subset of some orthonormal G x G-basis. If C is a G x G-subbasis inscribed
in Diagf,, we define the square map ¢ corresponding to C by extending C to a G' x G-basis C’
inscribed in Diagy,, defining ©¢r as in Definition 46, and then restricting O to span((G x G)C).
Since Ocr is densely defined, <¢ is defined on a dense subset of span((G x G)C).

Each symmetric pair of graph or surface systems (§°,S) (as in 3.6 or 8.1) gives rise to square

maps as follows. Let G be the common stabilizer of the components in Y° and in Z°. Fix any
K° € Comp(Y°) and L° € Comp(Z°) and let

K:=K°nY and L:=L1°NZ,
then KOL C K°OL® C 5° Let
U:=H(KOL) C H(K°OL®) = (*(T' x I).

U is a Hilbert G X G-module because K and L are G-invariant. R
By Lemma 4, S is a A-invariant subgraph/subsurface of S and S° is a A-invariant sub-
graph/subsurface of S° The follovvlng theorem is proved in exactly the same way as Theo-

remBObyreplacmgB Z = X with Bov:S—X,3:2°—= X with for:5° = X, and T
with A.

Theorem 50. For any graph system there exist orthonormal A-bases C of H(g) and C° of
H(S°) such that
(1) ccce,
2) C is inscribed in Comp(S),
3) C° is inscribed in Comp(S°), and
4) for each ¢ € C°, the restricted map o ¥ : span(Ac) — H(X) is a weak isomorphism.

(
(
(
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10.8. From diagonal to square. Assume that (S°,S) is a symmetric pair of graph systems.
By Lemma 9,

S=IndTS,  §°=Ind*T5°.
This implies that the A-basis C° of H(S’o) from Theorem 50 is also a I' x I'-basis of H(éo)
As before, fix K° € Comp(Y®°) and L° € Comp(Z°) and denote K := K°NY, L := L° N Z.
By applying elements of T' x T" we can assume that C° is inscribed in Comp(K°OL°) and C is
inscribed in Comp(KOL). Identify H(K°OL®) with ¢*(T' x T') as in Lemma 49. By applying
elements of G' x G we can further assume that C° is inscribed in Diagf,.

This argument shows that for symmetric pairs (§°,S) (as in 6.2) of graph systems, A-bases
of H(S) inscribed in Comp(S) give rise to G x G-bases of H(KOL) C (2(T" x T') inscribed in
Diagf,, and therefore to square maps < : H(KOL) — H(K) ® H(L).

Theorem 51. Suppose U is the Hilbert G x G-submodule of (*(T x ') coming from a symmetric
pair of graph systems (S°,8) as in 10.7. Suppose that there exist a subgroup H of finite index

in G and an H x H-basis C of U inscribed in Diagh, such that the corresponding square map
Oc : U — (AT x T) is ingective. Then SHNC holds for S.

Proof. The square map O¢ : U — (*(I' x I') is H x H-equivariant. Using diagram (36) the
square map can be equivalently written as

Oc

H(KOL) H(K)®H(L).

Since this map is injective, it induces an injective H X H-map on the finite sums

A ~ ~

H(YBZ) = @ ko 1oy HIKOL) ——= @ g0 1oy H(K) @ H(L) = H(Y') ©H(2).

where (K°, L°) € Comp(Y®°) x Comp(Z°). This shows that

A

dimpyp H(S) = dimp,p H(YOZ)

_ dimp,y H(YDZ) _ dimgyy H(Y)®H(Z)
'xI':HxH] = [I'xI':HxH|

= dimp,r H(Y) &H(Z) = dimp H(Y) - dimp H(Z),

which implies SHNC by Theorem 23(d). O

Remark. Theorem 51 holds under the weaker assumption that there exist a sequence H; of
subgroups of finite index in I' and H; x H;-bases C; of U inscribed in Diaggi such that the
corresponding square map becomes “more and more injective”, i.e.

dlmHszl Ker <>Ci

li =
iiglo[l“xl“:Hitz-]
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10.9. Classes of groups: P and Pj;,,. Let P be the class of groups I' satisfying the following
condition.

Condition 1. If

e (G is a normal subgroup of finite index in T,
o U is a Hilbert G x G-submodule of (*(T x T),
e there exists an orthonormal G x G-basis B of U inscribed in Diagg,
e there exists an orthonormal G x G-basis B" of U+ inscribed in Diagg, and
o for each b € B'UB", the singleton {b} is a (not necessarily orthonormal) I' x I'-basis of
2(T' x T) (as defined in 4.4),
then

e there exists a normal subgroup H of finite index in I' and
o there exists an H x H-basis C' of U inscribed in Diagl,

such that the corresponding square map e 2 U — €2(T x T') is injective.

For example, all infinite simple groups belong to P.

Another class of groups, Py, is defined by replacing the conclusion of Condition 1 by the
weaker property as in the above remark: there exist a sequence H; of subgroups of finite index
in " and H; x H;-bases C] of U inscribed in Diagy; such that (dimp,, Ker Cer)/[Ux T Hy x Hj]
converges to 0.

Clearly, P C Py,,. With some work it is possible to show that the space U coming from a
pair of graph systems as in 10.7 satisfies the assumptions of Condition 1; we skip the details.
It is therefore an interesting question, what groups belong to P or to Pj;,. Theorem 51 implies
that if P (or Py;,) contains the free group of rank 2 then SHNC holds.

10.10. Atomic square maps. Let (§°,S) be a symmetmc pair of graph or surface systems.
Suppose ¢ : S* — S is an atomic decomposition of S asin 5.5 or 8.4.

Each such atomic decompositions yields a A-basis C of H(S ) as follows. For each i, choose
any M; € Comp(S?) and let A; := Staba(M;). Then A, is free, hence ICC. Since

dima, H(Ml) = dima H(S;) = f(S;) =

H(M;) is isometrically isomorphic to ¢*(4;), so we can choose a vector in H(M;) that forms
an orthonormal A;-basis of H(M;). This vector also forms an orthonormal A-basis of H(S?).
Combining such vectors gives an orthonormal A-basis C of H(S*) inscribed in C’omp(S *). Since
¢ : 5* — S is a weak isomorphism, C := $(C) is a A-basis inscribed in Comp(S).

Going from diagonal to square as in 10.8 gives rise to a G x G-basis C of £2(I' x T') inscribed
in Diagg which we call an atomic basis, and to the corresponding square map <¢ which we call
an atomic square map.

Theorem 52. If a (T' x I'-invariant) atomic decomposition of S can be chosen so that the
corresponding atomic square map ¢ : £2(T x T') — (2(T' x ') (or equivalently, atomic glide
square map <») is injective, then SHNC holds for S.
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The proof is the same as in Theorem 51, and one can similarly state a limit version of
Theorem 52: assume that there is a sequence of atomic decompositions, the ith of which is
H; x H;-invariant, and that the corresponding atomic square maps become “more and more
injective”.

11. SUBSPACES AND ARRANGEMENTS.

For this section we will assume that I" is a group, G is a normal subgroup of I" of finite index,
and denote I' :=T'/G, n := |T|.

11.1. G-subspaces. For a Hilbert I'-module H, let

e SP(H) be the set of Hilbert subspaces in H, and
e SP(H)Y be the set of G-invariant Hilbert subspaces in H.

We will be primarily interested in the case H := ¢2(T"). The elements of SP(H)® will be called
G-subspaces. The left action of I' on H induces I'-actions on SP(H) and on SP(H)“. This in
turn induces a I'-action on SP(H)C.

11.2. Arrangements.

Definition 53. Let H be a Hilbert space. An arrangement in H is a function ® : I — SP(H),
where I is a set.

For i € I, ®(i) will be denoted by U;, so an arrangement is simply an indexed family of
subspaces U; C U, possibly with repetitions.

The arrangements in H form a category ARR(H): the morphisms from arrangement & :
I — SP(H) to arrangement ¥ : J — SP(H) are the maps f : I — J such that & = ¥ o f.

Definition 54. A (', G)-arrangement is a function ® : I — SP((*(I'))Y such that

o [ is a free I'-set, B
o & commutes with the T-actions on I and SP((*(T))¢.

The (', G)-arrangements form a subcategory ARR(T, G) of ARR(¢*(T)): the morphisms
from ® : I — SP(£3(T')) to ¥ : J — SP(£*(T"))¢ are the [-equivariant maps f : I — J such
that ® = Vo f.

Definition 55. The product of two (I',G)-arrangements ® : I — SP((*(I"))¢ and ¥ : J —
SP(A(T))Y is the (I, G)-arrangement ® x U : [ x J — SP(L3(T'))Y defined by

(© x W)(i,j) := ®(z) N W(j),
where T' acts on I x J diagonally.

11.3. Arrangements coming from systems. Let (S°,S) be a connected symmetric pair of

either graph systems as in 6.2 or surface systems as in 8.1. Then H(X ) has dimension 1 over I
and therefore is isometrically isomorphic to ¢(T).

Let I° := Comp(Y°) and J° := Comp(Z°), then I° and J° are I-sets such that for all
K € I° and L € J°, Stabp(K) = Stabr(L) = G, i.e. G fixes I° and J° pointwise. Therefore
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the I'-actions on I° and J° pass to actions by the finite quotient [ on I° and J°, respectively.
By Lemma 19, I° and J° are free transitive I'-sets. The maps

Dy : I° = SP(AT)Y, K°—HG(K°NY))=aH(K°NY)) and
dy:J° = SPA(T)C, L°w H(B(L°NZ)) = B(H(L N Z))

are (T, G)-arrangements. The (I', G)-arrangement ®g coming from S — X is the same as the
product &y x & .

11.4. Subspaces coming from systems. If (§°,S) is a connected symmetric pair of graph
or surface systems, pick some K° € Comp(Y°), L° € Comp(Z°) and define
K:=K°nY, L:=L°NZ,
(37) V=H(&(K)), W :=H(3(L)).
If V and W are defined as above, we will say that V and W are subspaces coming from (S°,S).

Theorem 56. SHNC is equivalent to the following statement. If (§°,8) is a connected sym-
metric pair of graph systems as in 3.7 and 6.2, and V and W come from (S°,S), then the
following inequality holds.

Z(V,W): > dimeg (V N gW) < dime V - dimeg W.
gel’
Proof.
dimg V = dimg H(a(K°NY)) = dimg H(K°NY)
= dimp IndS H(K° NY) = dimp H(Y) = 82 (V;T).
Similarly, dimg W = b (Z:T).
> dimg (VN gW) = dime H(G(K°NY)) NH(B(g(L° N 2)))

. > dimg H(a(x° ﬂgf/)) N AL N 2)))

— gZdimG H((K° NY)B(g(L° N Z))

_ 9% S>> ding H(B(K" NY)O(g(L° N 2))
- %dimi P H(hK NT)OEL N 2)

(h,g)eTxT
1 A . A
= — dimg H(S) = dimp H(S) = b (8;T).
n
The equivalence to SHNC now follows from Theorem 23(d’). U



56 IGOR MINEYEV

11.5. Duality. Given V,W € SP(£*(T"))%, we will use the following notations.
n = |[| = dimg *(T'), k:=dimgV, [:=dimg W.

The next lemma establishes a certain kind of duality in inequality Z(V, W) between the
subspaces and their orthogonal complements.

Lemma 57 (duality). If V,W € SP(¢*(T"))%, then

dimg V - dimg W =)~ dimg (V N gWv)
ger
= dimg V* - dimg W =) " dimg (V- ngW™).
geTl

Proof. By the additivity of dimension, for each g € T,

dimg (V N gW) = n — dimg (V N gWw)*
=n—dimg VL +gWt

= n — dimg V* — dimg gW™* + dimg (VN gw)
=n—(n—k)—(n—10)+dimg (Vg

= —n+k+1+dimg (VEngWt),

then

k= dimg (VN gW)

gel
=kl+> [n—k—1—dimg (V' ngWh)]
gel
=kl+n(n—k—1)-> dime(V'ngwt)
gel
=(n—k)(n—1)—=> dimg(V:ngw")
gel

proves the lemma. O

For Hilbert subspaces V and W of U, pr[V,W] will denote the image of the orthogonal
projection pr[-, W] : V' — W. We present some more duality statements.
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Lemma 58. The following inequalities are pairwise equivalent for VW € SP(£3(T"))¢.

Z(V,W) : > dimg (V N gW) < dimg V - dimg W
gel’
T, (V,W) Y dimg (VN gwh) < dimg V* - dimg W
gel’
To(V, W) : > dimg (pr(V,gW']) > dimg V - dimg W
gel
Ts(V, W) : > dimg (prigV, W) > dimg V - dimg W
gel
TV D _geF d(;IiIrlfG(“//ﬂ gw) - Zgil iH;QCEFg)W FV 20
Ts(V, W) : > ) dime (gV N AW) < dimg (1) - dimg V - dimg W
gel’ hel

Proof. The equivalence Z(V, W) < Z;(V, W) holds by Lemma 57.
For the equivalence Z(V, W) < Zy(V, W), note that V' N giW is the kernel of the orthogonal
projection pr[-, gW] : V. — gW+, hence

dimg (V N gW) + dimg (pr[V, QWL]) =k

and
D dimg (VngW) <kl &
gel’
Z [k — dimg (pr[V,gW*])] < ki &
gel’
> dimg (pr[V,gW"]) = k(n —1).
gel’
The rest of the equivalences are similar or easy. 0

Exercise: write at least 8 other equivalent inequalities.
12. ERGODICITY.
As before, G is a normal subgroup of finite index in I' and ' := I'/G.

12.1. The definition of ergodicity.
Definition 59. A G-vector in (*(T) is a G-subspace U € SP(*(T"))¢ with dimg U = 1.
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Definition 60. Given a subspace V € SP((*(T'))¢, a G-vector basis of V is a set {Uy,..., Uy}
of G-vectors in 'V such that the map

k k
P> vicv
i=1 i=1

induced by the inclusions U; C V' is a weak isomorphism. If this map is an isometric isomor-
phism, the G-vector basis is called orthonormal.

Definition 61. A G-vector U in (*(T') will be called ergodic if the map

P — > gu e

gel gel
induced by the inclusions gU C (*(T') is injective, or equivalently, is a weak isomorphism.

Definition 62. A subspace V € SP(¢*(T"))¢ will be called ergodic if V and V* admit G-vector
bases that consist of ergodic G-vectors.

For a family F C SP(¢*(T))Y, let F" denote the closure of F under intersections.
Definition 63. A family F C SP((*(T'))Y will be called ergodic if each V € F" is ergodic.

Theorem 64. If (5°,S) is a connected symmetric pair of graph systems and V and W come
from (8°,8), then the family TV UTW C SP(£3(T"))¢ is ergodic.

Here I'V means the set {gV | g € '}
Proof. By the definition in (37),
V=H(a(K)) and W =H(BL)),

then VAW = fon(KOL).

Consider the G-equivariant map /5’ ov: KOL — X , or equivalently the I'-equivariant map
Bob: [(KOL) — X. G is the stabilizer of K°, L°, and K°0 L°, hence its elements stabilize K,
L, and KOL. One can pick an orthonormal G-basis C of H(KU L) inscribed in Comp(KO L)
by adding one G-orbit of edges, or one atom, at a time as in Theorem 30. This is also an
orthonormal I-basis of H(T'(K T L)). Then for each ¢ € C, span(3 o 7(Gc)) is a G-vector. This
G-vector is ergodic because the map (o maps span(L'c) injectively to H(X) = ¢%(T'). All such
G-vectors form a G-vector basis of H(KT L), and their images under 3o give an orthonormal
G-vector basis of V N W. Now continue adding G-orbits of edges one by one to go from KO L
to K°O L°. This similarly gives an orthonormal G-vector basis of (V N W)+. Thus V N W is
ergodic.

The same argument applies to all intersections gV N AW for gV € T'V and hW € T'W.
Furthermore, it generalizes inductively to all finite intersections of elements of the family 'V U
LC'W. Since this family is finite, its closure under intersections is the family of finite intersections.

0

Theorem 65. If inequality Z(V, W) holds for all pairs V,W € SP((*(I))¢ such that the family
LV UTW C SP(A(T))¢ is ergodic, then SHNC' holds.
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Proof. This follows from theorems 56 and 64. O

Theorem 66. If (S°,S) is a connected symmetric pair of graph systems or of surface systems,
V and W come from (8°,S), and dimg W = 1, then the following inequality holds.

Z(V,W): > dimg (V N gW) < dimg V - dimg W = dimg V.
gel
Proof. Let ¢ be the composition

B ngw)cPaw — > g C A(I),

geTl € €

Q|
=i

Q|
s

then go(@gef(VﬂgVV)) C V. Since the G-vector W is ergodic (as in Definition 61), ¢ is
injective. Then

> " dimg (V N gW) = dimg @V Ng)
gel gel
= dimg @(@(V N gW)) <dimg V =dimg V - dimg W.

gel

0

Theorems 66 and 56 imply that SHNC holds if dimg W = 1. This gives another proof of the
result of Tardos [25] and generalizes it to surfaces.

12.2. A test case: finite-group representations. To test the inequality Z(V, W) (which is
equivalent to SHNC by Theorem 56), it might be helpful to consider it in the case when I is
finite of order n and G is trivial. Let CI" be the complex group algebra of I'. Then dimg is the
usual dimension dim of vector spaces and dim CI' = |I'| = n.

Suppose V and W are subspaces of CI" and F" is the closure of the family

F:={gV]geT}U{hW|hel} CSP(CI)

under finite intersections. Suppose further that for each V' € F there is an orthonormal basis
{ai,...,a,} over C such that for some k < n, V = span(aq,...,ax), and for each j = 1,...,n,
the orbit I'a; is a (not necessarily orthogonal) basis of CI' over C. Then is it true that

(38) > dim (V ngW) < dim V- dim W ?
gel’
Are there any conditions that imply this inequality?

12.3. A non-ergodic finite-dimensional example. Take any nontrivial finite group I'. Let
CT be its group algebra and V' = W be its vector subspace spanned by the vector

ZgECF.
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This subspace is I'-invariant. We have
d dim(VNgW) =) dimV=> 1=[>1=dimV-dimW,
gel gel gel

which fails inequality Z(V, W). This example suggests that some kind of ergodicity assumption
is necessary for SHNC to hold.

12.4. A special case: one edge less than cover. The following theorem proves SHNC in
the case when the subgroups A and B are represented by graphs Y and Z that can be embedded
in a common finite cover Z° of X, and Z is one edge less than Z°. This situation can be viewed
as dual to the case when B is of rank 2 (codimension 1 versus dimension 1).

Theorem 67. Let (5°,8) be a connected symmetric pair of graph systems as in 6.2 such that
Z°\ Z is one edge. Then SHNC holds for (I, A, B).

Proof. The pair of systems (S°,S) gives rise to a (I', G)-arrangement as in 11.3 and to G-
subspaces V and W of ¢*(T'). Denote

n:=dimg *(T) =|[|,  k:=dimg V.
We can assume that the edge Z° \ Z is essential in Z°, otherwise W = (*(T') and inequal-
ity Z(V, W) is immediate. Then dimg W =n — 1. Denote
Ay :={g el | dimg(VNgW)=k—1},
Ap={gel | dimg(VNngW)=k}={gel |V C gW},
A1 = N1, A = # A,
then I' = Ay UA, and M\,_; = n — \;. By the ergodicity of W, there is a Hilbert subspace
W,, C U such that ¢*(T') = W & W,, and Gjer gW,, — > ger GWn C U is injective. This implies
that W = (W,)* and dimg (3,5, §Wn) = Ax- The inclusion
_ _ _ oL
Ve () aw=()aW)"=()@W)" = (> W)
geAy geAy geAy geAy
implies £ < n — A\;. The equivalences
E<n-—\<
(k — 1)(n — )\k) + kX, < k(n — 1) =
(k — 1))\k_1 + kA, < k(n — 1) <~
Y dime (VAgW) + ) dimg (V N gW) < dime V - dimg W <

geEAL_1 gEAK
> dimg (VN gW) < dimg V - dimg W
gel

prove inequality Z(V, W), so SHNC holds for these (I', A, B) by Theorem 56. O
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13. MULTIPLICATIVITY.

In the case when o : Y — X and g : Z — X are immersions of finite graphs, S is their
pull-back, and « or § is a cover (equivalently, [I' : A] < oo or [I' : B] < o), it is well-known
that

r(S) =r(Y) - 7(2)

(see [19]). In this section we give an analytic proof of this and discuss when similar equalities
hold for dimensions and ¢2-Betti numbers.

13.1. A special case: finite sets and finite-dimensional spaces. The following lemma
says that the analog of inequality (38) for the counting measures on finite sets is true in the
strong sense.

Lemma 68 (Multiplicativity for finite sets). If I' is a finite group and M and N are arbitrary
subsets of I', then

D> #(MNgN) = #M - #N.

Proof.
Y #MNgN) =) "> Y #({m}n{gn})
=3 N #{Umpn{rn}) =3 Y 1=#M-#N.

0

Lemma 69 (Multiplicativity for standard finite-dimensional spaces). If ' is a finite group, V
and W are subspaces of CI' spanned by some subsets of the standard basis {g-1 € CI' | g € T'},
then

> dim (V N gW) = dim (V) - dim (W).

gel

Proof. The same proof as for Lemma 68 using the standard basis. U

13.2. Multiplicativity for arrangements. Lemma 69 also generalizes word-by-word to the
following statement for pairs (I', G).

Lemma 70 (Multiplicativity for standard G-subspaces). IfI" is a group, G is a normal subgroup
of finite index in I', VW € SPQKQ(F))G are subspaces of (*(T') spanned by some subsets of the
standard G-basis {gl*(G) | g € T} of (*(T'), then

> " dimg (V N gW) = dimg (V) - dimg (W).

gel
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Lemma 71 (Multiplicativity for G-subspaces). Suppose V,W € SP(*(I'))¢. If V = 0 or
W =0 orV =¢T) or W=/(*T), then
> dimg (VN gW) = dimg V - dimg W.
gel
Proof. If V.= (*(T') then
> dime (VA gW) =Y dimg gW =n - dimg W = dimg V - dimg W,
ger gerl
The rest is clear. 0J
Lemma 72 (Multiplicativity for finite covers). Let S be a connected graph system as in 3.7 or
a connected surface system as in 8.1. If a:Y — X or f: Z — X is a (finite) cover then
b (S:T) = b (VT) - b (Z; ).
In particular, SHNC' holds for S.

First proof. The statement follows from Lemma 71 by taking V' and W to be the G-subspaces
coming from the system. OJ

Second proof. If B : Z — X a cover, take the standard T'x I-basis {e} of H(X) = ¢2(I'xT"). It is
p0851ble to lift it to Z because 5 Z — X is a cover leafage. The lift is an orthonormal I'-basis
of H(Z) = H(Z°). Check that for each b in the lift, the restricted map 3 : span(I'b) — H(X) is

an isometric isomorphism. Then Theorem 32 applies, and, moreover, the proof of Theorem 32

provides the equality b(lg)(g; I) = b§2) (YD) - b(lg)(ZA; ') (rather than an inequality). O

13.3. Multiplicativity for square maps. Suppose U C (*(T x T') and a subbasis C come
from a symmetric pair of graph or surface systems (S°,S) as in 10.7. Then there exists an
orthonormal G x G-basis C° of £>(I" x I') inscribed in Diagy, such that C C C°.

Lemma 73. The following statements are equivalent.
(a) Oeo i 2T x T') — £2(T x T') is injective.
(b) Oco(C3(T x T)) is dense in (*(T x T).
(c) Qco : A(T'x T) — £2(T x T') is a weak isomorphism.

Proof. Since dimgyg £2(I'xT") < oo, the statement follows from the additivity of dimension. [J

If the following condition holds for a G x G-basis C° coming from (S8°,S), it would be a
correct formulation of multiplicativity (Lemma 72) for the general case when the immersions
a and [ are not assumed to be covers.

Condition 2. The glide square map $eo : 02(T' x T') — (*(T x T') is a weak isomorphism.

Lemma 74. If a G x G-basis C° coming from (S°,S) satisfies Condition 2 then SHNC' holds
for S.

Proof. {¢ is a restriction of {¢o, therefore it is injective, so SHNC follows from Theorem 51. [
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14. QUESTIONS.

The notions in this article lead beyond HNC. We ask some questions that arise from the
above considerations and seem to be interesting.

Question 1. Suppose G is a finite index subgroup in I' and U is a Hilbert G x G-submodule of
(T x ') that admits an orthonormal G x G-basis inscribed in Diagy. Then does there exist a
subgroup H of finite index in T and an H x H-basis C of U inscribed in Diagy; such that the
square map ¢ : U — (2(T x T') is injective? Is this true if U comes from a system as in 10.7?

Question 2. Does the free group of rank 2 belong to the class P in 10.97 Or to P, ? Does
the infinite cyclic group belong to P or to Py, ?

Question 3. If I' is the fundamental group of a compact surface of Euler characteristics —1,
then does I' belong to P or to Py ?

Question 4. Do all finite groups belong to P, or equivalently, to Py, ?

Question 5. Are there any groups that do not belong to Py, ? Is there a residually finite group
that does not belong to Py, ¢

Question 6. Are atomic square maps injective? (See 10.10.)
The affirmative answer would imply SHNC.

Question 7. Let T be a group. For which bases of (*(I' x T') inscribed in (I' x T')/A is the
corresponding glide square map < : (*(T' x T') — (>(T' x ') a weak isomorphism, and for which
is it not?

Question 8. If VW € SP(A(")¢ and the family TV UTW C SP(*(T))¢ is ergodic
(see 12.1), then does the following inequality hold?

IZ(V,W): > " dime (V N gW) < dime V - dimg W.
gel
An affirmative answer would imply SHNC by Theorem 65.
Question 9. In the case of finite groups, does inequality (38) hold?
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