Applications of filtered quiver varieties in representation theory

Mee Seong Im

December 13, 2013
Table of contents

Applications of invariant theory

What is invariant theory?
 Algebraic perspective
 Geometric perspective
 Classical problems

Generalizing classical problems
 Quiver varieties
 Symplectic geometry
 Interesting quiver varieties
 Filtered quiver varieties

Open problems

Coding theory
Applications of filtered quiver varieties in representation theory

Applications of invariant theory

Applications

- David Mumford’s geometric invariant theory and Hilbert schemes in algebraic geometry
- Nakajima’s quiver variety and Gan and Ginzburg’s almost-commuting variety in representation theory
- Hamiltonian reduction construction in symplectic geometry
- Weight enumerators and self-dual codes in coding theory
- Grothendieck-Springer resolution in geometric representation theory
Finite group actions and classical problems I

▶ Consider $\mathbb{C}[x, y]$.
 ▶ Problem: find all $f \in \mathbb{C}[x, y]$ invariant under the linear transformation $f : x \to -x, y \to -y$.
 ▶ Invariant polynomials: x^2, y^2, xy.
 ▶ S_2-invariant subring:
 \[
 \mathbb{C}[x, y]^{S_2} = \mathbb{C}[x^2, y^2, xy] \cong \frac{\mathbb{C}[X, Y, Z]}{(XY - Z^2)}
 \]
 ▶ Problem: find all $f \in \mathbb{C}[x, y]$ invariant under the linear transformation $f : x \to -x, y \to y$.
 ▶ Invariant polynomials: x^2, y.
 ▶ S_2-invariant subring:
 \[
 \mathbb{C}[x, y]^{S_2} \cong \mathbb{C}[x^2, y].
 \]
 ▶ Definition: Let G be a finite group and V be a vector space. A (linear) representation of G on V is a group homomorphism $\rho : G \to GL(V)$.

Mee Seong Im 4
Finite group actions and classical problems II

- If \(\rho \) is a representation of \(G \), then \((g, v) \mapsto \rho(g)v \) is an **action** of \(G \) on \(V \).

- Definition: A vector space with a \(G \)-action by linear maps is also called a **\(G \)-module**.

- Definition: given a representation of a group \(G \) on a vector space \(V \), a regular (polynomial) function \(f \in \mathbb{C}[V] \) is called **\(G \)-invariant** or **invariant** if \(f(g.v) = f(v) \) for all \(g \in G \) and \(v \in V \).

- We denote \(\mathbb{C}[V]^G \subseteq \mathbb{C}[V] \) to be the subalgebra of invariant functions.
What is the geometry behind the (sub)algebra? I

▶ In the example when $\mathbb{C}[x, y]^{S_2} \cong \mathbb{C}[X, Y, Z]/\langle XY - Z^2 \rangle$, the corresponding variety is the cone

$$\text{Spec}(\mathbb{C}[x, y]^{S_2}) \cong \mathbb{C}^2 / S_2.$$

▶ In the example when $\mathbb{C}[x, y]^{S_2} \cong \mathbb{C}[x^2, y]$,

$$\text{Spec}(\mathbb{C}[x, y]^{S_2}) \cong \mathbb{C}^2 / S_2.$$
What is the geometry behind the (sub)algebra? II

- In an orbit space, points that lie in the same G-orbit are identified in order to obtain the variety corresponding to the invariant subring.
- Each point in V/G corresponds to a distinct coset.
- What if G is not finite?
 - For \mathbb{C}^* acting on \mathbb{C}^2 via $\lambda.(x, y) = (\lambda x, \lambda^{-1}y)$, we have $\mathbb{C}[x, y]^{\mathbb{C}^*} = \mathbb{C}[xy]$. But $\mathbb{C}^2/\mathbb{C}^*$ is not Hausdorff.
 - For \mathbb{C}^* acting on \mathbb{C}^2 via $\lambda.(x, y) = (\lambda x, \lambda y)$, we have $\mathbb{C}[x, y]^{\mathbb{C}^*} = \mathbb{C}$. Again, the orbit space $\mathbb{C}^2/\mathbb{C}^*$ is not Hausdorff. How should we make it T_2?
 - The origin lies in every orbit closure.
 - Any morphism constant on orbits is constant.
 - Topology on $\mathbb{C}^2/\mathbb{C}^*$ is undesirable.
 - A good candidate for $\mathbb{C}^2/\mathbb{C}^*$ is a point.
- Define $\mathbb{C}^2/\mathbb{C}^* := \text{Spec}(\mathbb{C}[x, y]^{\mathbb{C}^*}) =$ space of closed orbits.
Applications of filtered quiver varieties in representation theory

What is invariant theory?

Geometric perspective

Geometric invariant theory

- Definition: $\text{Spec}(R) :=$ the set of all proper prime ideals of R.
- Definition: given a character χ of G, define

\[
\mathbb{C}[V]^G,\chi := \{ f \in \mathbb{C}[V] : f(g \cdot v) = \chi(g)f(v) \ \forall g \in G, v \in V \}.
\]

- Definition: define $V//_{\chi} G := \text{Proj}(\bigoplus_{i \geq 0} \mathbb{C}[V]^G,\chi^i)$.
- Definition: given $S = \bigoplus_{i \geq 0} S_i$, we define $\text{Proj}(S) :=$ the set of all homogeneous prime ideals that do not contain the irrelevant ideal $S_+ = \bigoplus_{i > 0} S_i$.
- Use GIT techniques to construct new varieties and relate to classical problems.
Classical problems: let $G = GL_n(\mathbb{C})$.

- Suppose G acts on M_n via conjugation.
 - Problem: what is the geometry, algebra, and intuition behind the conjugation action?
 - The conjugation action is a change-of-basis.
 - From linear algebra, any square matrix can be put into Jordan canonical form.
 - $\mathbb{C}[M_n]^G \cong \mathbb{C}[\mathfrak{h}]^{S_n} \cong \mathbb{C}[\mathbb{C}^n]$.

- Suppose G acts on $M_n^{\oplus k}$ via simultaneous conjugation: for $g \in G$ and (A_1, \ldots, A_k), we have

$$g.(A_1, \ldots, A_k) = (gA_1g^{-1}, \ldots, gA_kg^{-1}).$$

Then $\mathbb{C}[M_n^{\oplus k}]^G \cong \mathbb{C}[\text{tr}(\text{closed quiver paths})]$.
Classical problems: let $G = GL_n(\mathbb{C}) \times GL_n(\mathbb{C})$.

- Suppose G acts on M_n via the left-right action: for $(g, h) \in G$ and $A \in M_n$, we have $(g, h).A = gAh^{-1}$.
 Then $\mathbb{C}[M_n]^G \cong \mathbb{C}$ via 1-parameter subgroup techniques.

- Suppose G acts on $M_n^{\oplus k}$ via the simultaneous left-right action: for (g, h) and (A_1, \ldots, A_k), we have

\[
(g, h). (A_1, \ldots, A_k) = (gA_1h^{-1}, \ldots, gA_kh^{-1}).
\]

Then $\mathbb{C}[M_n^{\oplus k}]^G \cong \mathbb{C}$ by elementary algebra or 1-parameter subgroup techniques.
Generalizing classical problems

- One way is via quiver representations.
- Definition: a quiver is a finite directed graph and a representation of a quiver assigns a finite dimensional vector space to each vertex and a linear map to each arrow.
- Denote $\text{Rep}(Q, \beta)$ as the quiver representation space. A product of $G := \prod_{i \in Q_0} GL_{\beta_i}(\mathbb{C})$ acts on a quiver representation as a change-of-basis.
- Examples:

\[Q : \bullet \rightarrow \bullet \leftarrow \bullet \]

\[Q' : \circ \rightarrow \bullet \rightarrow \bullet \]

- Suppose the dimension vector $\beta = (1, n)$ is assigned to Q'. This is the birth of a new and important area in mathematics.
Hamiltonian reduction in symplectic geometry

Suppose $G := GL_n(\mathbb{C})$ acts on $M_n \times \mathbb{C}^n$. Differentiate the above action: $\frac{d}{dt}(\exp(tv) \cdot (r, i))|_{t=0} = ([v, r], vi)$. Dualize a to get $T^*(gl_n \times \mathbb{C}^n) \xrightarrow{\mu} g^*, (r, s, i, j) \mapsto [r, s] + ij$. Above construction is used to construct an almost-commuting variety.

Theorem (Crawley-Boevey, Gan-Ginzburg): $\mu^{-1}(0)$ is a complete intersection with $n + 1$ irreducible components.
Hamiltonian reduction in symplectic geometry

\[Q' : \circ \rightarrow \bullet \]

Theorem (Nakijima):
\[(\mathbb{C}^2)[n] \cong \mu^{-1}(0) \big/ \det G \rightarrow \cdots \rightarrow \mu^{-1}(0) \big/ \det^{-1} G \]

\[\mu^{-1}(0) \big/ G \cong S^n(\mathbb{C}^2) \]

Theorem (Derksen-Weyman): given any acyclic \(Q \),
\[\mathbb{C}[Rep(Q, \beta)] \prod_{i \in Q_0} SL_{n_i}(\mathbb{C}) \] is finitely generated.

Theorem (Domokos-Zubkov, Schofield-Van den Bergh):
given any \(Q \), \[\mathbb{C}[Rep(Q, \beta)] \prod_{i \in Q_0} SL_{n_i}(\mathbb{C}) \] is finitely generated.
Interesting quiver varieties

- The study of the Jordan quiver reps $\bullet \circlearrowleft$ is equivalent to the study of the space of matrices under conjugation.
- The study of the Kronecker quiver reps $\bullet \rightarrow \bullet$ is equivalent to the study of the space of matrices under the left-right action.
- ADE-Dynkin quiver varieties
- Nakajima, Lusztig, and Calogero-Moser quiver varieties
- Restrict to a subgroup \mathbb{H} of G or restrict to a subspace $\text{Rep}(Q, \beta)$ of the vector space $\text{Rep}(Q, \beta)$
- Filtered representations of quiver varieties (Im)
 - Results
 - Open problems
Filtered quiver varieties

Definition: let \(Q \) be a quiver and let \(\beta \in \mathbb{Z}^{Q_0} \). Let \(F^\bullet \) be a filtration of vector spaces at each vertex \(i \in Q_0 \). We define \(F^\bullet \text{Rep}(Q, \beta) \subseteq \text{Rep}(Q, \beta) \) to be the subspace of all maps that preserve the filtration of vector spaces.

The product \(\mathbb{P} \subseteq \mathbb{G} \) of parabolic invertible matrices acts on \(F^\bullet \text{Rep}(Q, \beta) \) as a change-of-basis.

Problem: given any \(Q, \beta, \) and \(F^\bullet \), what is \(\mathbb{C}[F^\bullet \text{Rep}(Q, \beta)]^\mathbb{U} \) where \(\mathbb{U} \) is the maximal unipotent subgroup of \(\mathbb{P} \)?

Example: let \(Q \) be the framed Jordan quiver \(\circ \rightarrow \bullet \circ \rightarrow \bullet \) and let \(\beta = (1, n) \). Let \(F^\bullet \) be the complete standard filtration of vector spaces at the nonframed vertex. Then \(F^\bullet \text{Rep}(Q, \beta) \cong b \times \mathbb{C}^n \) and \(B \leq GL_n(\mathbb{C}) \) acts on \(b \times \mathbb{C}^n \) via the adjoint action. What are \(b \times \mathbb{C}^n \parallel_{\chi} B \) for various \(\chi \)?
Basic assumption: let F^\bullet be the complete standard filtration of vector spaces at each vertex of a quiver.

Theorem (-): for a quiver of a finite Dynkin type with $\beta = (n, \ldots, n)$ and F^\bullet, $\mathbb{C}[b^{\oplus r}]^U \cong \mathbb{C}[t^{\oplus r}]$.

Theorem (-): for an affine \widetilde{A}_r quiver with a framing and $\beta = (n, \ldots, n, m)$ with F^\bullet, the subring $\mathbb{C}[b^{\oplus r+1} \oplus M_{n \times m}]^U$ is finitely generated.

Corollary (-): for an affine \widetilde{A}_r quiver with no framing and $\beta = (n, \ldots, n)$ with F^\bullet, $\mathbb{C}[b^{\oplus r+1}]^U \cong \mathbb{C}[t^{\oplus r+1}]$.

Corollary (-): for an affine \widetilde{D}_r quiver with no framing and $\beta = (n, \ldots, n)$ with F^\bullet, $\mathbb{C}[b^{\oplus r}]^U \cong \mathbb{C}[t^{\oplus r}]$.

Mee Seong Im 16
Open problems

- Describe generators (and relations) of the following invariant rings.
 - Consider the 3-Kronecker quiver
 \[\bullet \rightarrow \rightarrow \rightarrow \rightarrow \bullet \]
 with \(\beta = (n, n) \) with the complete standard filtration of vector spaces at each vertex. The subring of interest is \(\mathbb{C}[b^{\oplus 3}] U_n \times U_n \).
 - Consider the 2-Jordan quiver
 \[\circ \rightarrow \bullet \rightarrow \circ \]
 with dimension vector \(n \) with the complete standard filtration of vector spaces. The subring of interest is \(\mathbb{C}[b^{\oplus 2}] U_n \).

- Together with the above two problems and results by Im, we then will be able describe the invariant ring for the filtered space for any quiver \(Q \).
Coding theory I

- Consider a noisy telegraph line from Chicago to NY which transmits 0’s and 1’s.
- Occasionally, 0 is received as a 1 and 1 is received as a 0.
- Problem: send many important messages down this line, quickly and reliably.
- Solution: send only a certain strings of 0’s and 1’s, which are called **codewords**.
- Example:

 ![Diagram]

 - Suppose 01010 is received.
 - The message is, more likely, 00000 (2 errors occurred), rather than 11111 (3 errors occurred).
Coding theory II

- Definition: The Hamming distance $\text{dist}(u, v)$ between two vectors $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n)$ is the number of coordinates where $u_i \neq v_i$.

- Examples: $\text{dist}(01010, 00000) = 2$, $\text{dist}(0122, 2001) = 4$.

- Receiver should decode the received vector as the closest codeword, measured in Hamming distance.

- In general, if $d = \min$ Hamming distance between u and v, the code can correct $e = \left\lfloor \frac{1}{2}(d - 1) \right\rfloor$ errors, where $\lfloor x \rfloor$ is the greatest integer not exceeding x.

- Definition: An $[n, k, d]$ code over \mathbb{F}_q consists of q^k codewords (u_1, \ldots, u_n) which have Hamming distance at least d apart and form a linear space.

- Definition: $n = \text{length}$, $k = \text{dimension}$, $d = \text{minimum distance}$ of the code.
Applications of filtered quiver varieties in representation theory

Coding theory III

Definition: Let C be an $[n, k, d]$ code over \mathbb{F}_q. We define the **dual code** to be

$$C^\perp = \{(u_1, \ldots, u_n) : u \cdot v = \sum_{i=1}^{n} u_i v_i = 0 \ \forall v = (v_1, \ldots, v_n) \in C\}.$$

Definition: A **self-dual code** is one for which $C^\perp = C$.

If $C = C^\perp$, then $k = \frac{1}{2} n$; so n is even.

Definition: The **(Hamming) weight** $\text{wt}(u)$ of u is the number of nonzero u_i.

Since for all $u, v \in C$, we have

$$\text{dist}(u, v) = \text{wt}(u - v) = \text{wt}(w)$$

for some $w \in C$, the minimum distance d between codewords is equal to the smallest weight of any nonzero codeword.
Definition: If an \([n, k, d]\) code \(C\) contains \(A_i\) codewords of weight \(i\), then the **weight enumerator** of \(C\) is

\[
W_C(x, y) = \sum_{i=0}^{n} A_i x^{n-i} y^i = \sum_{u \in C} x^{n - \text{wt}(u)} y^{\text{wt}(u)},
\]

where \(x\) and \(y\) are indeterminates.

The weight enumerator of an \([n, k, d]\) code is a polynomial which tells the number of codewords of each weight.

Theorem (F. Jessie MacWilliams): if \(C\) is an \([n, k, d]\) code over \(\mathbb{F}_q\) with dual code \(C^\perp\), then

\[
W_{C^\perp}(x, y) = \frac{1}{q^k} W_C(x + (q-1)y, x - y).
\]

If \(C\) is self-dual, then \(k = n/2\) and

\[
W_C(x, y) = W_C \left(\frac{x + (q-1)y}{q^{1/2}}, \frac{x - y}{q^{1/2}} \right).
\]

Mee Seong Im 21
The end

Thank you. Questions?